Commit b6341055 authored by Yoach Lacombe's avatar Yoach Lacombe
Browse files

write first version of training script + example config

parent 813df4d2
{
"model_name_or_path": "ylacombe/musicgen-melody",
"push_to_hub": false,
"hub_model_id": "stable-speech-mini",
"report_to": ["wandb"],
"overwrite_output_dir": true,
"output_dir": "/home/yoach/dataspeech/artefacts/training/",
"train_dataset_name": "blabble-io/libritts_r+blabble-io/libritts_r+blabble-io/libritts_r",
"train_metadata_dataset_name": "stable-speech/libritts-r-tags-and-text-generated+stable-speech/libritts-r-tags-and-text-generated+stable-speech/libritts-r-tags-and-text-generated",
"train_dataset_config_name": "clean+clean+other",
"train_split_name": "train.clean.360+train.clean.100+train.other.500",
"eval_dataset_name": "blabble-io/libritts_r+blabble-io/libritts_r",
"eval_metadata_dataset_name": "stable-speech/libritts-r-tags-and-text-generated+stable-speech/libritts-r-tags-and-text-generated",
"eval_dataset_config_name": "clean+other",
"eval_split_name": "test.clean+test.other",
"target_audio_column_name": "audio",
"description_column_name": "text",
"prompt_column_name": "text_description",
"max_train_samples": 1000,
"max_eval_samples": 200,
"max_duration_in_seconds": 20,
"min_duration_in_seconds": 1.0,
"add_audio_samples_to_wandb": true,
"id_column_name": "id",
"preprocessing_num_workers": 24,
"pad_token_id": 2048,
"decoder_start_token_id": 2048,
"do_train": true,
"num_train_epochs": 20,
"gradient_accumulation_steps": 1,
"gradient_checkpointing": true,
"per_device_train_batch_size": 2,
"learning_rate": 1e-6,
"adam_beta1": 0.9,
"adam_beta2": 0.95,
"weight_decay": 0.1,
"logging_steps": 25,
"do_eval": true,
"predict_with_generate": true,
"include_inputs_for_metrics": true,
"evaluation_strategy": "epoch",
"per_device_eval_batch_size": 2,
"generation_max_length": 400,
"fp16": true,
"seed": 456,
"dataloader_num_workers":8
}
#!/usr/bin/env python
# coding=utf-8
# Copyright 2024 The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
""" Train a text-to-speech model using 🤗 Transformers Seq2SeqTrainer"""
import functools
import json
import logging
import os
import re
import sys
import warnings
import math
from tqdm import tqdm
from dataclasses import dataclass, field
from typing import Dict, List, Optional, Union
import datasets
import evaluate
import numpy as np
import torch
from datasets import DatasetDict, load_dataset, Dataset, IterableDataset, interleave_datasets, concatenate_datasets
import transformers
from transformers import (
AutoFeatureExtractor,
AutoModel,
AutoProcessor,
AutoTokenizer,
HfArgumentParser,
Seq2SeqTrainer,
Seq2SeqTrainingArguments,
set_seed,
)
from transformers.trainer_utils import get_last_checkpoint, is_main_process
from transformers.utils import check_min_version, send_example_telemetry
from transformers.utils.versions import require_version
from transformers.integrations import is_wandb_available
from accelerate import PartialState
from stable_speech import StableSpeechForConditionalGeneration, StableSpeechConfig
# Will error if the minimal version of Transformers is not installed. Remove at your own risks.
check_min_version("4.38.0.dev0")
require_version("datasets>=1.18.0", "To fix: pip install -r examples/pytorch/speech-recognition/requirements.txt")
logger = logging.getLogger(__name__)
def list_field(default=None, metadata=None):
return field(default_factory=lambda: default, metadata=metadata)
#### ARGUMENTS
class StableSpeechTrainer(Seq2SeqTrainer):
def _pad_tensors_to_max_len(self, tensor, max_length):
if self.tokenizer is not None and hasattr(self.tokenizer, "pad_token_id"):
# If PAD token is not defined at least EOS token has to be defined
pad_token_id = (
self.tokenizer.pad_token_id if self.tokenizer.pad_token_id is not None else self.tokenizer.eos_token_id
)
else:
if self.model.config.pad_token_id is not None:
pad_token_id = self.model.config.pad_token_id
else:
raise ValueError("Pad_token_id must be set in the configuration of the model, in order to pad tensors")
padded_tensor = pad_token_id * torch.ones(
(tensor.shape[0], max_length, tensor.shape[2]), dtype=tensor.dtype, device=tensor.device
)
padded_tensor[:, : tensor.shape[1]] = tensor
return padded_tensor
@dataclass
class ModelArguments:
"""
Arguments pertaining to which model/config/tokenizer we are going to fine-tune from.
"""
# TODO: pretrain from scratch
model_name_or_path: str = field(
metadata={"help": "Path to pretrained model or model identifier from huggingface.co/models"}
)
config_name: Optional[str] = field(
default=None, metadata={"help": "Pretrained config name or path if not the same as model_name"}
)
feature_extractor_name: Optional[str] = field(
default=None, metadata={"help": "Pretrained feature extractor name or path if not the same as model_name"}
)
description_tokenizer_name: Optional[str] = field(
default=None, metadata={"help": "Pretrained description tokenizer name or path if not the same as model_name"}
)
prompt_tokenizer_name: Optional[str] = field(
default=None, metadata={"help": "Pretrained prompt tokenizer name or path if not the same as description_tokenizer_name"}
)
cache_dir: Optional[str] = field(
default=None,
metadata={"help": "Where to store the pretrained models downloaded from huggingface.co"},
)
use_fast_tokenizer: bool = field(
default=True,
metadata={"help": "Whether to use one of the fast tokenizer (backed by the tokenizers library) or not."},
)
model_revision: str = field(
default="main",
metadata={"help": "The specific model version to use (can be a branch name, tag name or commit id)."},
)
pad_token_id: int = field(
default=None,
metadata={"help": "If specified, change the model pad token id."},
)
decoder_start_token_id: int = field(
default=None,
metadata={"help": "If specified, change the model decoder start token id."},
)
freeze_text_encoder: bool = field(
default=False,
metadata={"help": "Whether to freeze the text encoder."},
)
@dataclass
class DataSeq2SeqTrainingArguments:
"""
Arguments pertaining to what data we are going to input our model for training and eval.
Using `HfArgumentParser` we can turn this class
into argparse arguments to be able to specify them on
the command line.
"""
train_dataset_name: str = field(
default=None,
metadata={
"help": "The name of the training dataset to use (via the datasets library). Load and combine "
"multiple datasets by separating dataset ids by a '+' symbol. For example, to load and combine "
" librispeech and common voice, set `train_dataset_name='librispeech_asr+common_voice'`."
},
)
train_dataset_config_name: Optional[str] = field(
default=None,
metadata={
"help": "The configuration name of the training dataset to use (via the datasets library). Load and combine "
"multiple datasets by separating dataset configs by a '+' symbol."
},
)
train_split_name: str = field(
default="train",
metadata={
"help": ("The name of the training data set split to use (via the datasets library). Defaults to 'train'")
},
)
train_dataset_samples: str = field(
default=None,
metadata={
"help": "Number of samples in the training data. Load and combine "
"multiple datasets by separating dataset samples by a '+' symbol."
},
)
train_metadata_dataset_name: str = field(
default=None,
metadata={
"help": "The name of the metadata training dataset to use (via the datasets library). Load and combine "
"multiple datasets by separating dataset ids by a '+' symbol. For example, to load and combine "
" librispeech and common voice, set `train_dataset_name='librispeech_asr+common_voice'`."
},
)
eval_dataset_name: str = field(
default=None,
metadata={
"help": "The name of the evaluation dataset to use (via the datasets library). Defaults to the training dataset name if unspecified."
},
)
eval_dataset_config_name: Optional[str] = field(
default=None,
metadata={
"help": "The configuration name of the evaluation dataset to use (via the datasets library). Defaults to the training dataset config name if unspecified"
},
)
eval_split_name: str = field(
default="test",
metadata={
"help": "The name of the evaluation data set split to use (via the datasets library). Defaults to 'test'"
},
)
eval_metadata_dataset_name: str = field(
default=None,
metadata={
"help": "The name of the metadata training dataset to use (via the datasets library). Load and combine "
"multiple datasets by separating dataset ids by a '+' symbol. For example, to load and combine "
" librispeech and common voice, set `train_dataset_name='librispeech_asr+common_voice'`."
},
)
target_audio_column_name: str = field( # TODO
default="audio",
metadata={"help": "The name of the dataset column containing the target audio data. Defaults to 'audio'"},
)
conditional_audio_column_name: str = field( # TODO
default=None,
metadata={"help": "The name of the dataset column containing the conditional audio data. Defaults to 'audio'"},
)
description_column_name: str = field( #TODO
default=None,
metadata={"help": "The name of the dataset column containing the text data. Defaults to 'None'."},
)
prompt_column_name: str = field( #TODO
default=None,
metadata={"help": "The name of the dataset column containing the text data. Defaults to 'None'."},
)
overwrite_cache: bool = field(
default=False, metadata={"help": "Overwrite the cached preprocessed datasets or not."}
)
preprocessing_num_workers: Optional[int] = field(
default=None,
metadata={"help": "The number of processes to use for the preprocessing."},
)
max_train_samples: Optional[int] = field(
default=None,
metadata={
"help": (
"For debugging purposes or quicker training, truncate the number of training examples to this "
"value if set."
)
},
)
max_eval_samples: Optional[int] = field(
default=None,
metadata={
"help": (
"For debugging purposes or quicker training, truncate the number of validation examples to this "
"value if set."
)
},
)
max_duration_in_seconds: float = field(
default=35.0,
metadata={
"help": (
"Filter audio files that are longer than `max_duration_in_seconds` seconds to"
" 'max_duration_in_seconds`"
)
},
)
min_duration_in_seconds: float = field(
default=0.0, metadata={"help": "Filter audio files that are shorter than `min_duration_in_seconds` seconds"}
)
preprocessing_only: bool = field(
default=False,
metadata={
"help": (
"Whether to only do data preprocessing and skip training. This is especially useful when data"
" preprocessing errors out in distributed training due to timeout. In this case, one should run the"
" preprocessing in a non-distributed setup with `preprocessing_only=True` so that the cached datasets"
" can consequently be loaded in distributed training"
)
},
)
token: str = field(
default=None,
metadata={
"help": (
"The token to use as HTTP bearer authorization for remote files. If not specified, will use the token "
"generated when running `huggingface-cli login` (stored in `~/.huggingface`)."
)
},
)
use_auth_token: bool = field(
default=None,
metadata={
"help": "The `use_auth_token` argument is deprecated and will be removed in v4.34. Please use `token` instead."
},
)
trust_remote_code: bool = field(
default=False,
metadata={
"help": (
"Whether or not to allow for custom models defined on the Hub in their own modeling files. This option "
"should only be set to `True` for repositories you trust and in which you have read the code, as it will "
"execute code present on the Hub on your local machine."
)
},
)
add_audio_samples_to_wandb: bool = field(
default=False,
metadata={
"help": "If set and if `wandb` in args.report_to, will add generated audio samples to wandb logs."
}
)
id_column_name: str = field(
default=None,
metadata={
"help": "id column name."
}
)
@dataclass
class DataCollatorMusicGenWithPadding:
"""
Data collator that will dynamically pad the inputs received.
Args:
prompt_tokenizer (:class:`~transformers.AutoTokenizer`)
The prompt_tokenizer used for proccessing the data.
description_tokenizer (:class:`~transformers.AutoTokenizer`)
The description_tokenizer used for proccessing the data.
audio_feature_extractor (:class:`~transformers.AutoFeatureExtractor`)
The audio_feature_extractor used for proccessing the data.
padding (:obj:`bool`, :obj:`str` or :class:`~transformers.tokenization_utils_base.PaddingStrategy`, `optional`, defaults to :obj:`True`):
Select a strategy to pad the returned sequences (according to the model's padding side and padding index)
among:
* :obj:`True` or :obj:`'longest'`: Pad to the longest sequence in the batch (or no padding if only a single
sequence if provided).
* :obj:`'max_length'`: Pad to a maximum length specified with the argument :obj:`max_length` or to the
maximum acceptable input length for the model if that argument is not provided.
* :obj:`False` or :obj:`'do_not_pad'` (default): No padding (i.e., can output a batch with sequences of
different lengths).
pad_to_multiple_of (:obj:`int`, `optional`):
If set will pad the sequence to a multiple of the provided value.
This is especially useful to enable the use of Tensor Cores on NVIDIA hardware with compute capability >=
7.5 (Volta).
"""
prompt_tokenizer: AutoTokenizer
description_tokenizer: AutoTokenizer
audio_feature_extractor: AutoFeatureExtractor
feature_extractor_input_name: Optional[str] = "input_values"
padding: Union[bool, str] = "longest"
pad_to_multiple_of: Optional[int] = None
def __call__(self, features: List[Dict[str, Union[List[int], torch.Tensor]]]) -> Dict[str, torch.Tensor]:
# split inputs and labels since they have to be of different lengths and need
# different padding methods
labels = [torch.tensor(feature["labels"]).transpose(0,1) for feature in features]
# (bsz, seq_len, num_codebooks)
labels = torch.nn.utils.rnn.pad_sequence(labels,batch_first=True,padding_value=-100)
input_ids = [{"input_ids": feature["input_ids"]} for feature in features]
input_ids = self.description_tokenizer.pad(input_ids, return_tensors="pt", padding=self.padding, pad_to_multiple_of=self.pad_to_multiple_of)
prompt_input_ids = [{"input_ids": feature["prompt_input_ids"]} for feature in features]
prompt_input_ids = self.prompt_tokenizer.pad(prompt_input_ids, return_tensors="pt", padding=self.padding, pad_to_multiple_of=self.pad_to_multiple_of)
batch["prompt_input_ids"] = prompt_input_ids["input_ids"]
if "attention_mask" in prompt_input_ids:
batch["prompt_attention_mask"] = prompt_input_ids["attention_mask"]
batch= {"labels":labels, **input_ids}
if self.feature_extractor_input_name in features[0]:
# TODO: verify that it works
input_values = [{self.feature_extractor_input_name: feature[self.feature_extractor_input_name]} for feature in features]
input_values = self.feature_extractor.pad(input_values, return_tensors="pt")
batch[self.feature_extractor_input_name: input_values]
return batch
def convert_dataset_str_to_list(
dataset_names,
dataset_config_names,
metadata_dataset_names=None,
splits=None,
dataset_samples=None,
default_split="train",
):
if isinstance(dataset_names, str):
dataset_names = dataset_names.split("+")
dataset_config_names = dataset_config_names.split("+")
splits = splits.split("+") if splits is not None else None
dataset_samples = dataset_samples.split("+") if dataset_samples is not None else None
metadata_dataset_names = metadata_dataset_names.split("+") if metadata_dataset_names is not None else None
# basic checks to ensure we've got the right number of datasets/configs/splits/columns/probs
if len(dataset_names) != len(dataset_config_names):
raise ValueError(
f"Ensure one config is passed for each dataset, got {len(dataset_names)} datasets and"
f" {len(dataset_config_names)} configs."
)
if splits is not None and len(splits) != len(dataset_names):
raise ValueError(
f"Ensure one split is passed for each dataset, got {len(dataset_names)} datasets and {len(splits)} splits."
)
if metadata_dataset_names is not None and len(metadata_dataset_names) != len(dataset_names):
raise ValueError(
f"Ensure one metadata dataset is passed for each dataset, got {len(dataset_names)} datasets and {len(metadata_dataset_names)} metadata datasets."
)
if dataset_samples is not None:
if len(dataset_samples) != len(dataset_names):
raise ValueError(
f"Ensure one sample is passed for each dataset, got {len(dataset_names)} datasets and "
f"{len(dataset_samples)} samples."
)
dataset_samples = [float(ds_sample) for ds_sample in dataset_samples]
else:
dataset_samples = [None] * len(dataset_names)
splits = splits if splits is not None else [default_split for _ in range(len(dataset_names))]
dataset_names_dict = []
for i, ds_name in enumerate(dataset_names):
dataset_names_dict.append(
{
"name": ds_name,
"config": dataset_config_names[i],
"split": splits[i],
"metadata_dataset_name": metadata_dataset_names[i],
"samples": dataset_samples[i],
}
)
return dataset_names_dict
def load_multiple_datasets(
dataset_names: Union[List, str],
dataset_config_names: Union[List, str],
metadata_dataset_names: Optional[str]=None,
splits: Optional[Union[List, str]] = None,
label_column_names: Optional[List] = None,
stopping_strategy: Optional[str] = "first_exhausted",
dataset_samples: Optional[Union[List, np.array]] = None,
streaming: Optional[bool] = False,
seed: Optional[int] = None,
id_column_name: Optional[str] = None,
columns_to_keep: Optional[set[str]] = None,
**kwargs,
) -> Union[Dataset, IterableDataset]:
dataset_names_dict = convert_dataset_str_to_list(
dataset_names, dataset_config_names, metadata_dataset_names, splits, label_column_names, dataset_samples
)
if dataset_samples is not None:
dataset_samples = [ds_dict["samples"] for ds_dict in dataset_names_dict]
probabilities = np.array(dataset_samples) / np.sum(dataset_samples)
else:
probabilities = None
all_datasets = []
# iterate over the datasets we want to interleave
for dataset_dict in tqdm(dataset_names_dict, desc="Combining datasets..."):
dataset = load_dataset(
dataset_dict["name"],
dataset_dict["config"],
split=dataset_dict["split"],
streaming=streaming,
**kwargs,
)
dataset_features = dataset.features.keys()
metadata_dataset_name = dataset_dict["metadata_dataset_name"]
if metadata_dataset_name is not None:
metadata_dataset = load_dataset(
metadata_dataset_name,
dataset_dict["config"],
split=dataset_dict["split"],
streaming=streaming,
**kwargs,
)
if id_column_name is not None and id_column_name not in dataset:
raise ValueError(
f"id_column_name={id_column_name} but has not been found in the dataset columns"
f"- one of {', '.join(list(dataset.columns))}."
)
if id_column_name is not None and id_column_name not in metadata_dataset:
raise ValueError(
f"id_column_name={id_column_name} but has not been found in the metadata dataset columns"
f"- one of {', '.join(list(metadata_dataset.columns))}."
)
elif id_column_name is not None:
metadata_dataset = metadata_dataset.rename_column(id_column_name, f"metadata_{id_column_name}")
metadata_columns_to_keep = set(metadata_dataset.columns).intersection(set(dataset.column_names))
metadata_dataset = metadata_dataset.remove_columns(set(metadata_dataset.columns)-metadata_columns_to_keep)
dataset = concatenate_datasets([dataset, metadata_dataset], axis=1)
if id_column_name is not None:
if len(dataset.filter(lambda id1, id2: id1!=id2, input_columns=[id_column_name, f"metadata_{id_column_name}"])) != 0:
raise ValueError(f"Concatenate didn't work. Some ids don't correspond on dataset {dataset_dict["name"]}")
if columns_to_keep is not None:
dataset = dataset.remove_columns(set(dataset_features - columns_to_keep))
all_datasets.append(dataset)
if len(all_datasets) == 1:
# we have a single dataset so just return it as is
return all_datasets[0]
if streaming:
interleaved_dataset = interleave_datasets(
all_datasets,
stopping_strategy=stopping_strategy,
probabilities=probabilities,
seed=seed,
)
else:
interleaved_dataset = concatenate_datasets(all_datasets)
return interleaved_dataset
def main():
# See all possible arguments in src/transformers/training_args.py
# or by passing the --help flag to this script.
# We now keep distinct sets of args, for a cleaner separation of concerns.
parser = HfArgumentParser((ModelArguments, DataSeq2SeqTrainingArguments, Seq2SeqTrainingArguments))
if len(sys.argv) == 2 and sys.argv[1].endswith(".json"):
# If we pass only one argument to the script and it's the path to a json file,
# let's parse it to get our arguments.
model_args, data_args, training_args = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1]))
else:
model_args, data_args, training_args = parser.parse_args_into_dataclasses()
# Sending telemetry. Tracking the example usage helps us better allocate resources to maintain them. The
# information sent is the one passed as arguments along with your Python/PyTorch versions.
send_example_telemetry("run_stable_speech", model_args, data_args)
# Detecting last checkpoint.
last_checkpoint = None
if os.path.isdir(training_args.output_dir) and training_args.do_train and not training_args.overwrite_output_dir:
last_checkpoint = get_last_checkpoint(training_args.output_dir)
if last_checkpoint is None and len(os.listdir(training_args.output_dir)) > 0:
raise ValueError(
f"Output directory ({training_args.output_dir}) already exists and is not empty. "
"Use --overwrite_output_dir to overcome."
)
elif last_checkpoint is not None:
logger.info(
f"Checkpoint detected, resuming training at {last_checkpoint}. To avoid this behavior, change "
"the `--output_dir` or add `--overwrite_output_dir` to train from scratch."
)
# Setup logging
logging.basicConfig(
format="%(asctime)s - %(levelname)s - %(name)s - %(message)s",
datefmt="%m/%d/%Y %H:%M:%S",
handlers=[logging.StreamHandler(sys.stdout)],
)
logger.setLevel(logging.INFO if is_main_process(training_args.local_rank) else logging.WARN)
# Log on each process the small summary:
logger.warning(
f"Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu}, "
f"distributed training: {training_args.parallel_mode.value == 'distributed'}, 16-bits training: {training_args.fp16}"
)
# Set the verbosity to info of the Transformers logger (on main process only):
if is_main_process(training_args.local_rank):
transformers.utils.logging.set_verbosity_info()
logger.info("Training/evaluation parameters %s", training_args)
# Set seed before initializing model.
set_seed(training_args.seed)
# 1. First, let's load the dataset
raw_datasets = DatasetDict()
num_workers = data_args.preprocessing_num_workers
if training_args.do_train:
raw_datasets["train"] = load_multiple_datasets(
data_args.train_dataset_name,
data_args.train_dataset_config_name,
data_args.train_metadata_dataset_name,
splits=data_args.train_split_name,
dataset_samples=data_args.train_dataset_samples,
seed=training_args.seed,
cache_dir=model_args.cache_dir,
token=True if model_args.token else None,
trust_remote_code=model_args.trust_remote_code,
num_proc=data_args.preprocessing_num_workers,
id_column_name=data_args.id_column_name,
# streaming=data_args.streaming, TODO(SG): optionally enable streaming mode
)
if data_args.target_audio_column_name not in raw_datasets["train"].column_names:
raise ValueError(
f"--target_audio_column_name '{data_args.target_audio_column_name}' not found in dataset '{data_args.train_dataset_name}'."
" Make sure to set `--target_audio_column_name` to the correct audio column - one of"
f" {', '.join(raw_datasets['train'].column_names)}."
)
if data_args.description_column_name is not None and data_args.description_column_name not in raw_datasets["train"].column_names:
raise ValueError(
f"--description_column_name {data_args.description_column_name} not found in dataset '{data_args.train_dataset_name}'. "
"Make sure to set `--description_column_name` to the correct text column - one of "
f"{', '.join(raw_datasets['train'].column_names)}."
)
if data_args.prompt_column_name not in raw_datasets["train"].column_names:
raise ValueError(
f"--description_column_name {data_args.prompt_column_name} not found in dataset '{data_args.train_dataset_name}'. "
"Make sure to set `--prompt_column_name` to the correct text column - one of "
f"{', '.join(raw_datasets['train'].column_names)}."
)
if data_args.conditional_audio_column_name is not None and data_args.conditional_audio_column_name not in raw_datasets["train"].column_names:
raise ValueError(
f"--conditional_audio_column_name {data_args.conditional_audio_column_name} not found in dataset '{data_args.train_dataset_name}'. "
"Make sure to set `--conditional_audio_column_name` to the correct text column - one of "
f"{', '.join(raw_datasets['train'].column_names)}."
)
if data_args.max_train_samples is not None:
raw_datasets["train"] = raw_datasets["train"].select(range(data_args.max_train_samples))
if training_args.do_eval:
raw_datasets["eval"] = load_multiple_datasets(
data_args.eval_dataset_name if data_args.eval_dataset_name else data_args.train_dataset_name,
data_args.eval_dataset_config_name
if data_args.eval_dataset_config_name
else data_args.train_dataset_config_name,
data_args.eval_metadata_dataset_name,
splits=data_args.eval_split_name,
cache_dir=model_args.cache_dir,
token=True if model_args.token else None,
trust_remote_code=model_args.trust_remote_code,
num_proc=data_args.preprocessing_num_workers,
id_column_name=data_args.id_column_name,
# streaming=data_args.streaming, TODO(SG): optionally enable streaming mode
)
if data_args.max_eval_samples is not None:
raw_datasets["eval"] = raw_datasets["eval"].select(range(data_args.max_eval_samples))
# TODO: is is the right way to do ?
# 3. Next, let's load the config as we might need it to create
# load config
config = StableSpeechConfig.from_pretrained(
model_args.model_name_or_path,
cache_dir=model_args.cache_dir,
token=data_args.token,
trust_remote_code=data_args.trust_remote_code,
)
# update pad token id and decoder_start_token_id
config.update({
"pad_token_id": model_args.pad_token_id if model_args.pad_token_id is not None else model.config.pad_token_id,
"decoder_start_token_id": model_args.decoder_start_token_id if model_args.decoder_start_token_id is not None else model.config.decoder_start_token_id,
})
# 4. Now we can instantiate the feature extractor, tokenizers and model
# Note for distributed training, the .from_pretrained methods guarantee that only
# one local process can concurrently download model & vocab.
# load feature extractor
feature_extractor = AutoFeatureExtractor.from_pretrained(
model_args.feature_extractor_name or model_args.model_name_or_path,
cache_dir=model_args.cache_dir,
token=data_args.token,
trust_remote_code=data_args.trust_remote_code,
)
# load prompt tokenizer
prompt_tokenizer = AutoTokenizer.from_pretrained(
model_args.prompt_tokenizer_name or model_args.description_tokenizer_name or model_args.model_name_or_path,
cache_dir=model_args.cache_dir,
token=data_args.token,
trust_remote_code=data_args.trust_remote_code,
)
# load description tokenizer
description_tokenizer = AutoTokenizer.from_pretrained(
model_args.description_tokenizer_name or model_args.model_name_or_path,
cache_dir=model_args.cache_dir,
token=data_args.token,
trust_remote_code=data_args.trust_remote_code,
)
# create model + TODO: not from_pretrained probably
model = StableSpeechForConditionalGeneration.from_pretrained(
model_args.model_name_or_path,
cache_dir=model_args.cache_dir,
config=config,
token=data_args.token,
trust_remote_code=data_args.trust_remote_code,
)
# take audio_encoder_feature_extractor
audio_encoder_feature_extractor = AutoFeatureExtractor.from_pretrained(
model.config.audio_encoder._name_or_path,
)
# 5. Now we preprocess the datasets including loading the audio, resampling and normalization
# Thankfully, `datasets` takes care of automatically loading and resampling the audio,
# so that we just need to set the correct target sampling rate and normalize the input
# via the `feature_extractor`
# resample target audio
raw_datasets = raw_datasets.cast_column(
data_args.target_audio_column_name, datasets.features.Audio(sampling_rate=audio_encoder_feature_extractor.sampling_rate)
)
if data_args.conditional_audio_column_name is not None:
raw_datasets = raw_datasets.cast_column(
data_args.conditional_audio_column_name, datasets.features.Audio(sampling_rate=feature_extractor.sampling_rate)
)
# derive max & min input length for sample rate & max duration
max_target_length = data_args.max_duration_in_seconds * feature_extractor.sampling_rate
min_target_length = data_args.min_duration_in_seconds * feature_extractor.sampling_rate
target_audio_column_name = data_args.target_audio_column_name
conditional_audio_column_name = data_args.conditional_audio_column_name
description_column_name = data_args.description_column_name
prompt_column_name = data_args.prompt_column_name
feature_extractor_input_name = feature_extractor.model_input_names[0]
# Preprocessing the datasets.
# We need to read the audio files as arrays and tokenize the targets.
def pass_through_processors(batch):
# load audio
if conditional_audio_column_name is not None:
sample = batch[target_audio_column_name]
inputs = feature_extractor(sample["array"], sampling_rate=sample["sampling_rate"])
batch[feature_extractor_input_name] = getattr(inputs, feature_extractor_input_name)[0]
if description_column_name is not None:
text = batch[description_column_name]
batch["input_ids"] = description_tokenizer(text)["input_ids"]
if prompt_column_name is not None:
text = batch[prompt_column_name]
batch["prompt_input_ids"] = prompt_tokenizer(text)["input_ids"]
# load audio
target_sample = batch[target_audio_column_name]
labels = audio_encoder_feature_extractor(target_sample["array"], sampling_rate=target_sample["sampling_rate"])
batch["labels"] = labels["input_values"]
# take length of raw audio waveform
batch["target_length"] = len(target_sample["array"].squeeze())
return batch
with training_args.main_process_first(desc="dataset map preprocessing"):
vectorized_datasets = raw_datasets.map(
pass_through_processors,
remove_columns=next(iter(raw_datasets.values())).column_names,
num_proc=num_workers,
desc="preprocess datasets",
)
def is_audio_in_length_range(length):
return length > min_target_length and length < max_target_length
# filter data that is shorter than min_target_length
vectorized_datasets = vectorized_datasets.filter(
is_audio_in_length_range,
num_proc=num_workers,
input_columns=["target_length"],
)
audio_decoder = model.audio_encoder
def apply_audio_decoder(batch):
labels = audio_decoder.encode(torch.tensor(batch["labels"]).to(audio_decoder.device))["audio_codes"]
labels, delay_pattern_mask = model.decoder.build_delay_pattern_mask(labels,
model.generation_config.decoder_start_token_id,
model.generation_config.max_length + 1)
labels = model.decoder.apply_delay_pattern_mask(labels, delay_pattern_mask)
# the first timestamp is associated to a row full of BOS, let's get rid of it
batch["labels"] = labels[:, 1:]
return batch
with training_args.main_process_first(desc="audio target preprocessing"):
# for now on CPU
# TODO: enrich for GPU
vectorized_datasets = vectorized_datasets.map(
apply_audio_decoder,
num_proc=num_workers,
desc="preprocess datasets",
)
# TODO: will it work on GPU ? unmerged for now https://github.com/huggingface/accelerate/pull/2433
# for split in vectorized_datasets:
# with distributed_state.split_between_processes(vectorized_datasets[split]["labels"]) as input_labels:
# result = audio_decoder(input_labels)
if data_args.add_audio_samples_to_wandb and "wandb" in training_args.report_to:
if is_wandb_available():
from transformers.integrations import WandbCallback
else:
raise ValueError("`args.add_audio_samples_to_wandb=True` but wandb is not installed. See https://docs.wandb.ai/quickstart to install.")
# for large datasets it is advised to run the preprocessing on a
# single machine first with ``args.preprocessing_only`` since there will mostly likely
# be a timeout when running the script in distributed mode.
# In a second step ``args.preprocessing_only`` can then be set to `False` to load the
# cached dataset
if data_args.preprocessing_only:
logger.info(f"Data preprocessing finished. Files cached at {vectorized_datasets.cache_files}")
return
# 6. Next, we can prepare the training.
# Let's use word CLAP similary as our evaluation metric,
# instantiate a data collator and the trainer
# Define evaluation metrics during training, *i.e.* CLAP similarity
# TODO: allow using another CLAP
clap = AutoModel.from_pretrained("laion/larger_clap_music_and_speech")
clap_processor = AutoProcessor.from_pretrained("laion/larger_clap_music_and_speech")
# TODO add wer with lightweight asr model
def clap_similarity(texts, audios):
clap_inputs = clap_processor(text=texts, audios=audios.squeeze(1), padding=True, return_tensors="pt")
text_features = clap.get_text_features(clap_inputs["input_ids"], attention_mask=clap_inputs.get("attention_mask", None))
audio_features = clap.get_audio_features(clap_inputs["input_features"])
cosine_sim = torch.nn.functional.cosine_similarity(audio_features, text_features, dim=1, eps=1e-8)
return cosine_sim.mean()
eval_metrics = {"clap": clap_similarity}
def compute_metrics(pred):
input_ids = pred.inputs
input_ids[input_ids==-100] = description_tokenizer.pad_token_id
texts = description_tokenizer.batch_decode(input_ids, skip_special_tokens=True)
audios = pred.predictions
results = {key: metric(texts, audios) for (key, metric) in eval_metrics.items()}
return results
# Now save everything to be able to create a single processor later
# make sure all processes wait until data is saved
with training_args.main_process_first():
# only the main process saves them
if is_main_process(training_args.local_rank):
# save feature extractor, tokenizer and config
if model_args.prompt_tokenizer_name is None and model_args.description_tokenizer_name or (model_args.prompt_tokenizer_name==model_args.description_tokenizer_name):
prompt_tokenizer.save_pretrained(training_args.output_dir)
else:
logger.warning("Prompt tokenizer ('{model_args.prompt_tokenizer_name}') and description tokenizer ('{model_args.description_tokenizer_name}') are not the same. Saving only the prompt tokenizer.")
prompt_tokenizer.save_pretrained(training_args.output_dir)
feature_extractor.save_pretrained(training_args.output_dir)
config.save_pretrained(training_args.output_dir)
# Instantiate custom data collator
data_collator = DataCollatorMusicGenWithPadding(
feature_extractor=feature_extractor, feature_extractor_input_name=feature_extractor_input_name, prompt_tokenizer=prompt_tokenizer, description_tokenizer=description_tokenizer
)
# Freeze Encoders
model.freeze_encoders(model_args.freeze_text_encoder)
# Initialize StableSpeechTrainer
trainer = StableSpeechTrainer(
model=model,
data_collator=data_collator,
args=training_args,
compute_metrics=compute_metrics,
train_dataset=vectorized_datasets["train"] if training_args.do_train else None,
eval_dataset=vectorized_datasets["eval"] if training_args.do_eval else None,
tokenizer=feature_extractor,
)
if data_args.add_audio_samples_to_wandb and "wandb" in training_args.report_to:
def decode_predictions(predictions):
audios = predictions.predictions
return {"audio": np.array(audios.squeeze(1))}
class WandbPredictionProgressCallback(WandbCallback):
"""Custom WandbCallback to log model predictions during training.
"""
def __init__(self, trainer, val_dataset,
num_samples=8):
"""Initializes the WandbPredictionProgressCallback instance.
Args:
trainer (Seq2SeqTrainer): The Hugging Face Seq2SeqTrainer instance.
val_dataset (Dataset): The validation dataset.
num_samples (int, optional): Number of samples to select from
the validation dataset for generating predictions.
Defaults to 8.
"""
super().__init__()
self.trainer = trainer
self.sample_dataset = val_dataset.select(range(num_samples))
def on_train_end(self, args, state, control, **kwargs):
super().on_train_end(args, state, control, **kwargs)
predictions = self.trainer.predict(self.sample_dataset)
# decode predictions and labels
predictions = decode_predictions(predictions)
input_ids = self.sample_dataset["input_ids"]
texts = self.description_tokenizer.batch_decode(input_ids, skip_special_tokens=True)
audios = predictions["audio"]
# log the table to wandb
self._wandb.log({"sample_songs": [self._wandb.Audio(audio, caption=text, sample_rate=audio_encoder_feature_extractor.sampling_rate) for (audio, text) in zip(audios, texts)]})
# Instantiate the WandbPredictionProgressCallback
progress_callback = WandbPredictionProgressCallback(
trainer=trainer,
val_dataset=vectorized_datasets["eval"],
num_samples=8, # TODO: add to args
)
# Add the callback to the trainer
trainer.add_callback(progress_callback)
# 8. Finally, we can start training
# Training
if training_args.do_train:
# use last checkpoint if exist
if last_checkpoint is not None:
checkpoint = last_checkpoint
elif os.path.isdir(model_args.model_name_or_path):
checkpoint = model_args.model_name_or_path
else:
checkpoint = None
train_result = trainer.train(resume_from_checkpoint=checkpoint, ignore_keys_for_eval=["past_key_values", "attentions"])
trainer.save_model()
metrics = train_result.metrics
max_train_samples = (
data_args.max_train_samples
if data_args.max_train_samples is not None
else len(vectorized_datasets["train"])
)
metrics["train_samples"] = min(max_train_samples, len(vectorized_datasets["train"]))
trainer.log_metrics("train", metrics)
trainer.save_metrics("train", metrics)
trainer.save_state()
# Evaluation
results = {}
if training_args.do_eval:
logger.info("*** Evaluate ***")
metrics = trainer.evaluate()
max_eval_samples = (
data_args.max_eval_samples if data_args.max_eval_samples is not None else len(vectorized_datasets["eval"])
)
metrics["eval_samples"] = min(max_eval_samples, len(vectorized_datasets["eval"]))
trainer.log_metrics("eval", metrics)
trainer.save_metrics("eval", metrics)
# Write model card and (optionally) push to hub
config_name = data_args.train_dataset_config_name if data_args.train_dataset_config_name is not None else "na"
kwargs = {
"finetuned_from": model_args.model_name_or_path,
"tasks": "text-to-speech",
"tags": ["text-to-speech", data_args.train_dataset_name],
"dataset_args": (
f"Config: {config_name}, Training split: {data_args.train_split_name}, Eval split:"
f" {data_args.eval_split_name}"
),
"dataset": f"{data_args.train_dataset_name.upper()} - {config_name.upper()}",
}
if training_args.push_to_hub:
trainer.push_to_hub(**kwargs)
else:
trainer.create_model_card(**kwargs)
return results
if __name__ == "__main__":
main()
\ No newline at end of file
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment