import os os.environ['TF_USE_LEGACY_KERAS'] = '1' import tensorflow as tf import tensorflow_hub as hub import tensorflow_text as text text_input = tf.keras.layers.Input(shape=(), dtype=tf.string) preprocessor = hub.KerasLayer( "https://kaggle.com/models/tensorflow/bert/TensorFlow2/en-uncased-preprocess/3") encoder_inputs = preprocessor(text_input) encoder = hub.KerasLayer( "https://kaggle.com/models/tensorflow/bert/TensorFlow2/en-uncased-l-12-h-768-a-12/3", trainable=True) outputs = encoder(encoder_inputs) pooled_output = outputs["pooled_output"] # [batch_size, 768]. sequence_output = outputs["sequence_output"] # [batch_size, seq_length, 768]. embedding_model = tf.keras.Model(text_input, pooled_output) sentences = tf.constant(["(your text here)"]) print(embedding_model(sentences))