Commit f87ec10a authored by comfyanonymous's avatar comfyanonymous
Browse files

Support base SDXL and SDXL refiner models.

Large refactor of the model detection and loading code.
parent 9fccf4aa
...@@ -34,8 +34,10 @@ class ControlNet(nn.Module): ...@@ -34,8 +34,10 @@ class ControlNet(nn.Module):
channel_mult=(1, 2, 4, 8), channel_mult=(1, 2, 4, 8),
conv_resample=True, conv_resample=True,
dims=2, dims=2,
num_classes=None,
use_checkpoint=False, use_checkpoint=False,
use_fp16=False, use_fp16=False,
use_bf16=False,
num_heads=-1, num_heads=-1,
num_head_channels=-1, num_head_channels=-1,
num_heads_upsample=-1, num_heads_upsample=-1,
...@@ -51,6 +53,8 @@ class ControlNet(nn.Module): ...@@ -51,6 +53,8 @@ class ControlNet(nn.Module):
num_attention_blocks=None, num_attention_blocks=None,
disable_middle_self_attn=False, disable_middle_self_attn=False,
use_linear_in_transformer=False, use_linear_in_transformer=False,
adm_in_channels=None,
transformer_depth_middle=None,
): ):
super().__init__() super().__init__()
if use_spatial_transformer: if use_spatial_transformer:
...@@ -75,6 +79,10 @@ class ControlNet(nn.Module): ...@@ -75,6 +79,10 @@ class ControlNet(nn.Module):
self.image_size = image_size self.image_size = image_size
self.in_channels = in_channels self.in_channels = in_channels
self.model_channels = model_channels self.model_channels = model_channels
if isinstance(transformer_depth, int):
transformer_depth = len(channel_mult) * [transformer_depth]
if transformer_depth_middle is None:
transformer_depth_middle = transformer_depth[-1]
if isinstance(num_res_blocks, int): if isinstance(num_res_blocks, int):
self.num_res_blocks = len(channel_mult) * [num_res_blocks] self.num_res_blocks = len(channel_mult) * [num_res_blocks]
else: else:
...@@ -97,8 +105,10 @@ class ControlNet(nn.Module): ...@@ -97,8 +105,10 @@ class ControlNet(nn.Module):
self.dropout = dropout self.dropout = dropout
self.channel_mult = channel_mult self.channel_mult = channel_mult
self.conv_resample = conv_resample self.conv_resample = conv_resample
self.num_classes = num_classes
self.use_checkpoint = use_checkpoint self.use_checkpoint = use_checkpoint
self.dtype = th.float16 if use_fp16 else th.float32 self.dtype = th.float16 if use_fp16 else th.float32
self.dtype = th.bfloat16 if use_bf16 else self.dtype
self.num_heads = num_heads self.num_heads = num_heads
self.num_head_channels = num_head_channels self.num_head_channels = num_head_channels
self.num_heads_upsample = num_heads_upsample self.num_heads_upsample = num_heads_upsample
...@@ -111,6 +121,24 @@ class ControlNet(nn.Module): ...@@ -111,6 +121,24 @@ class ControlNet(nn.Module):
linear(time_embed_dim, time_embed_dim), linear(time_embed_dim, time_embed_dim),
) )
if self.num_classes is not None:
if isinstance(self.num_classes, int):
self.label_emb = nn.Embedding(num_classes, time_embed_dim)
elif self.num_classes == "continuous":
print("setting up linear c_adm embedding layer")
self.label_emb = nn.Linear(1, time_embed_dim)
elif self.num_classes == "sequential":
assert adm_in_channels is not None
self.label_emb = nn.Sequential(
nn.Sequential(
linear(adm_in_channels, time_embed_dim),
nn.SiLU(),
linear(time_embed_dim, time_embed_dim),
)
)
else:
raise ValueError()
self.input_blocks = nn.ModuleList( self.input_blocks = nn.ModuleList(
[ [
TimestepEmbedSequential( TimestepEmbedSequential(
...@@ -179,7 +207,7 @@ class ControlNet(nn.Module): ...@@ -179,7 +207,7 @@ class ControlNet(nn.Module):
num_head_channels=dim_head, num_head_channels=dim_head,
use_new_attention_order=use_new_attention_order, use_new_attention_order=use_new_attention_order,
) if not use_spatial_transformer else SpatialTransformer( ) if not use_spatial_transformer else SpatialTransformer(
ch, num_heads, dim_head, depth=transformer_depth, context_dim=context_dim, ch, num_heads, dim_head, depth=transformer_depth[level], context_dim=context_dim,
disable_self_attn=disabled_sa, use_linear=use_linear_in_transformer, disable_self_attn=disabled_sa, use_linear=use_linear_in_transformer,
use_checkpoint=use_checkpoint use_checkpoint=use_checkpoint
) )
...@@ -238,7 +266,7 @@ class ControlNet(nn.Module): ...@@ -238,7 +266,7 @@ class ControlNet(nn.Module):
num_head_channels=dim_head, num_head_channels=dim_head,
use_new_attention_order=use_new_attention_order, use_new_attention_order=use_new_attention_order,
) if not use_spatial_transformer else SpatialTransformer( # always uses a self-attn ) if not use_spatial_transformer else SpatialTransformer( # always uses a self-attn
ch, num_heads, dim_head, depth=transformer_depth, context_dim=context_dim, ch, num_heads, dim_head, depth=transformer_depth_middle, context_dim=context_dim,
disable_self_attn=disable_middle_self_attn, use_linear=use_linear_in_transformer, disable_self_attn=disable_middle_self_attn, use_linear=use_linear_in_transformer,
use_checkpoint=use_checkpoint use_checkpoint=use_checkpoint
), ),
...@@ -257,7 +285,7 @@ class ControlNet(nn.Module): ...@@ -257,7 +285,7 @@ class ControlNet(nn.Module):
def make_zero_conv(self, channels): def make_zero_conv(self, channels):
return TimestepEmbedSequential(zero_module(conv_nd(self.dims, channels, channels, 1, padding=0))) return TimestepEmbedSequential(zero_module(conv_nd(self.dims, channels, channels, 1, padding=0)))
def forward(self, x, hint, timesteps, context, **kwargs): def forward(self, x, hint, timesteps, context, y=None, **kwargs):
t_emb = timestep_embedding(timesteps, self.model_channels, repeat_only=False) t_emb = timestep_embedding(timesteps, self.model_channels, repeat_only=False)
emb = self.time_embed(t_emb) emb = self.time_embed(t_emb)
...@@ -265,6 +293,14 @@ class ControlNet(nn.Module): ...@@ -265,6 +293,14 @@ class ControlNet(nn.Module):
outs = [] outs = []
hs = []
t_emb = timestep_embedding(timesteps, self.model_channels, repeat_only=False)
emb = self.time_embed(t_emb)
if self.num_classes is not None:
assert y.shape[0] == x.shape[0]
emb = emb + self.label_emb(y)
h = x.type(self.dtype) h = x.type(self.dtype)
for module, zero_conv in zip(self.input_blocks, self.zero_convs): for module, zero_conv in zip(self.input_blocks, self.zero_convs):
if guided_hint is not None: if guided_hint is not None:
......
{
"architectures": [
"CLIPTextModel"
],
"attention_dropout": 0.0,
"bos_token_id": 0,
"dropout": 0.0,
"eos_token_id": 2,
"hidden_act": "gelu",
"hidden_size": 1280,
"initializer_factor": 1.0,
"initializer_range": 0.02,
"intermediate_size": 5120,
"layer_norm_eps": 1e-05,
"max_position_embeddings": 77,
"model_type": "clip_text_model",
"num_attention_heads": 20,
"num_hidden_layers": 32,
"pad_token_id": 1,
"projection_dim": 512,
"torch_dtype": "float32",
"vocab_size": 49408
}
...@@ -29,31 +29,31 @@ class ClipVisionModel(): ...@@ -29,31 +29,31 @@ class ClipVisionModel():
outputs = self.model(**inputs) outputs = self.model(**inputs)
return outputs return outputs
def convert_to_transformers(sd): def convert_to_transformers(sd, prefix):
sd_k = sd.keys() sd_k = sd.keys()
if "embedder.model.visual.transformer.resblocks.0.attn.in_proj_weight" in sd_k: if "{}transformer.resblocks.0.attn.in_proj_weight".format(prefix) in sd_k:
keys_to_replace = { keys_to_replace = {
"embedder.model.visual.class_embedding": "vision_model.embeddings.class_embedding", "{}class_embedding".format(prefix): "vision_model.embeddings.class_embedding",
"embedder.model.visual.conv1.weight": "vision_model.embeddings.patch_embedding.weight", "{}conv1.weight".format(prefix): "vision_model.embeddings.patch_embedding.weight",
"embedder.model.visual.positional_embedding": "vision_model.embeddings.position_embedding.weight", "{}positional_embedding".format(prefix): "vision_model.embeddings.position_embedding.weight",
"embedder.model.visual.ln_post.bias": "vision_model.post_layernorm.bias", "{}ln_post.bias".format(prefix): "vision_model.post_layernorm.bias",
"embedder.model.visual.ln_post.weight": "vision_model.post_layernorm.weight", "{}ln_post.weight".format(prefix): "vision_model.post_layernorm.weight",
"embedder.model.visual.ln_pre.bias": "vision_model.pre_layrnorm.bias", "{}ln_pre.bias".format(prefix): "vision_model.pre_layrnorm.bias",
"embedder.model.visual.ln_pre.weight": "vision_model.pre_layrnorm.weight", "{}ln_pre.weight".format(prefix): "vision_model.pre_layrnorm.weight",
} }
for x in keys_to_replace: for x in keys_to_replace:
if x in sd_k: if x in sd_k:
sd[keys_to_replace[x]] = sd.pop(x) sd[keys_to_replace[x]] = sd.pop(x)
if "embedder.model.visual.proj" in sd_k: if "{}proj".format(prefix) in sd_k:
sd['visual_projection.weight'] = sd.pop("embedder.model.visual.proj").transpose(0, 1) sd['visual_projection.weight'] = sd.pop("{}proj".format(prefix)).transpose(0, 1)
sd = transformers_convert(sd, "embedder.model.visual", "vision_model", 32) sd = transformers_convert(sd, prefix, "vision_model.", 32)
return sd return sd
def load_clipvision_from_sd(sd): def load_clipvision_from_sd(sd, prefix):
sd = convert_to_transformers(sd) sd = convert_to_transformers(sd, prefix)
if "vision_model.encoder.layers.30.layer_norm1.weight" in sd: if "vision_model.encoder.layers.30.layer_norm1.weight" in sd:
json_config = os.path.join(os.path.dirname(os.path.realpath(__file__)), "clip_vision_config_h.json") json_config = os.path.join(os.path.dirname(os.path.realpath(__file__)), "clip_vision_config_h.json")
else: else:
......
...@@ -600,7 +600,7 @@ class SpatialTransformer(nn.Module): ...@@ -600,7 +600,7 @@ class SpatialTransformer(nn.Module):
use_checkpoint=True, dtype=None): use_checkpoint=True, dtype=None):
super().__init__() super().__init__()
if exists(context_dim) and not isinstance(context_dim, list): if exists(context_dim) and not isinstance(context_dim, list):
context_dim = [context_dim] context_dim = [context_dim] * depth
self.in_channels = in_channels self.in_channels = in_channels
inner_dim = n_heads * d_head inner_dim = n_heads * d_head
self.norm = Normalize(in_channels, dtype=dtype) self.norm = Normalize(in_channels, dtype=dtype)
...@@ -630,7 +630,7 @@ class SpatialTransformer(nn.Module): ...@@ -630,7 +630,7 @@ class SpatialTransformer(nn.Module):
def forward(self, x, context=None, transformer_options={}): def forward(self, x, context=None, transformer_options={}):
# note: if no context is given, cross-attention defaults to self-attention # note: if no context is given, cross-attention defaults to self-attention
if not isinstance(context, list): if not isinstance(context, list):
context = [context] context = [context] * len(self.transformer_blocks)
b, c, h, w = x.shape b, c, h, w = x.shape
x_in = x x_in = x
x = self.norm(x) x = self.norm(x)
......
...@@ -502,6 +502,7 @@ class UNetModel(nn.Module): ...@@ -502,6 +502,7 @@ class UNetModel(nn.Module):
disable_middle_self_attn=False, disable_middle_self_attn=False,
use_linear_in_transformer=False, use_linear_in_transformer=False,
adm_in_channels=None, adm_in_channels=None,
transformer_depth_middle=None,
): ):
super().__init__() super().__init__()
if use_spatial_transformer: if use_spatial_transformer:
...@@ -526,6 +527,10 @@ class UNetModel(nn.Module): ...@@ -526,6 +527,10 @@ class UNetModel(nn.Module):
self.in_channels = in_channels self.in_channels = in_channels
self.model_channels = model_channels self.model_channels = model_channels
self.out_channels = out_channels self.out_channels = out_channels
if isinstance(transformer_depth, int):
transformer_depth = len(channel_mult) * [transformer_depth]
if transformer_depth_middle is None:
transformer_depth_middle = transformer_depth[-1]
if isinstance(num_res_blocks, int): if isinstance(num_res_blocks, int):
self.num_res_blocks = len(channel_mult) * [num_res_blocks] self.num_res_blocks = len(channel_mult) * [num_res_blocks]
else: else:
...@@ -631,7 +636,7 @@ class UNetModel(nn.Module): ...@@ -631,7 +636,7 @@ class UNetModel(nn.Module):
num_head_channels=dim_head, num_head_channels=dim_head,
use_new_attention_order=use_new_attention_order, use_new_attention_order=use_new_attention_order,
) if not use_spatial_transformer else SpatialTransformer( ) if not use_spatial_transformer else SpatialTransformer(
ch, num_heads, dim_head, depth=transformer_depth, context_dim=context_dim, ch, num_heads, dim_head, depth=transformer_depth[level], context_dim=context_dim,
disable_self_attn=disabled_sa, use_linear=use_linear_in_transformer, disable_self_attn=disabled_sa, use_linear=use_linear_in_transformer,
use_checkpoint=use_checkpoint, dtype=self.dtype use_checkpoint=use_checkpoint, dtype=self.dtype
) )
...@@ -690,7 +695,7 @@ class UNetModel(nn.Module): ...@@ -690,7 +695,7 @@ class UNetModel(nn.Module):
num_head_channels=dim_head, num_head_channels=dim_head,
use_new_attention_order=use_new_attention_order, use_new_attention_order=use_new_attention_order,
) if not use_spatial_transformer else SpatialTransformer( # always uses a self-attn ) if not use_spatial_transformer else SpatialTransformer( # always uses a self-attn
ch, num_heads, dim_head, depth=transformer_depth, context_dim=context_dim, ch, num_heads, dim_head, depth=transformer_depth_middle, context_dim=context_dim,
disable_self_attn=disable_middle_self_attn, use_linear=use_linear_in_transformer, disable_self_attn=disable_middle_self_attn, use_linear=use_linear_in_transformer,
use_checkpoint=use_checkpoint, dtype=self.dtype use_checkpoint=use_checkpoint, dtype=self.dtype
), ),
...@@ -746,7 +751,7 @@ class UNetModel(nn.Module): ...@@ -746,7 +751,7 @@ class UNetModel(nn.Module):
num_head_channels=dim_head, num_head_channels=dim_head,
use_new_attention_order=use_new_attention_order, use_new_attention_order=use_new_attention_order,
) if not use_spatial_transformer else SpatialTransformer( ) if not use_spatial_transformer else SpatialTransformer(
ch, num_heads, dim_head, depth=transformer_depth, context_dim=context_dim, ch, num_heads, dim_head, depth=transformer_depth[level], context_dim=context_dim,
disable_self_attn=disabled_sa, use_linear=use_linear_in_transformer, disable_self_attn=disabled_sa, use_linear=use_linear_in_transformer,
use_checkpoint=use_checkpoint, dtype=self.dtype use_checkpoint=use_checkpoint, dtype=self.dtype
) )
......
...@@ -2,6 +2,7 @@ import torch ...@@ -2,6 +2,7 @@ import torch
from comfy.ldm.modules.diffusionmodules.openaimodel import UNetModel from comfy.ldm.modules.diffusionmodules.openaimodel import UNetModel
from comfy.ldm.modules.encoders.noise_aug_modules import CLIPEmbeddingNoiseAugmentation from comfy.ldm.modules.encoders.noise_aug_modules import CLIPEmbeddingNoiseAugmentation
from comfy.ldm.modules.diffusionmodules.util import make_beta_schedule from comfy.ldm.modules.diffusionmodules.util import make_beta_schedule
from comfy.ldm.modules.diffusionmodules.openaimodel import Timestep
import numpy as np import numpy as np
class BaseModel(torch.nn.Module): class BaseModel(torch.nn.Module):
...@@ -15,9 +16,9 @@ class BaseModel(torch.nn.Module): ...@@ -15,9 +16,9 @@ class BaseModel(torch.nn.Module):
self.parameterization = "v" self.parameterization = "v"
else: else:
self.parameterization = "eps" self.parameterization = "eps"
if "adm_in_channels" in unet_config:
self.adm_channels = unet_config["adm_in_channels"] self.adm_channels = unet_config.get("adm_in_channels", None)
else: if self.adm_channels is None:
self.adm_channels = 0 self.adm_channels = 0
print("v_prediction", v_prediction) print("v_prediction", v_prediction)
print("adm", self.adm_channels) print("adm", self.adm_channels)
...@@ -55,6 +56,25 @@ class BaseModel(torch.nn.Module): ...@@ -55,6 +56,25 @@ class BaseModel(torch.nn.Module):
def is_adm(self): def is_adm(self):
return self.adm_channels > 0 return self.adm_channels > 0
def encode_adm(self, **kwargs):
return None
def load_model_weights(self, sd, unet_prefix=""):
to_load = {}
keys = list(sd.keys())
for k in keys:
if k.startswith(unet_prefix):
to_load[k[len(unet_prefix):]] = sd.pop(k)
m, u = self.diffusion_model.load_state_dict(to_load, strict=False)
if len(m) > 0:
print("unet missing:", m)
if len(u) > 0:
print("unet unexpected:", u)
del to_load
return self
class SD21UNCLIP(BaseModel): class SD21UNCLIP(BaseModel):
def __init__(self, unet_config, noise_aug_config, v_prediction=True): def __init__(self, unet_config, noise_aug_config, v_prediction=True):
super().__init__(unet_config, v_prediction) super().__init__(unet_config, v_prediction)
...@@ -95,3 +115,55 @@ class SDInpaint(BaseModel): ...@@ -95,3 +115,55 @@ class SDInpaint(BaseModel):
def __init__(self, unet_config, v_prediction=False): def __init__(self, unet_config, v_prediction=False):
super().__init__(unet_config, v_prediction) super().__init__(unet_config, v_prediction)
self.concat_keys = ("mask", "masked_image") self.concat_keys = ("mask", "masked_image")
class SDXLRefiner(BaseModel):
def __init__(self, unet_config, v_prediction=False):
super().__init__(unet_config, v_prediction)
self.embedder = Timestep(256)
def encode_adm(self, **kwargs):
clip_pooled = kwargs["pooled_output"]
width = kwargs.get("width", 768)
height = kwargs.get("height", 768)
crop_w = kwargs.get("crop_w", 0)
crop_h = kwargs.get("crop_h", 0)
if kwargs.get("prompt_type", "") == "negative":
aesthetic_score = kwargs.get("aesthetic_score", 2.5)
else:
aesthetic_score = kwargs.get("aesthetic_score", 6)
print(clip_pooled.shape, width, height, crop_w, crop_h, aesthetic_score)
out = []
out.append(self.embedder(torch.Tensor([width])))
out.append(self.embedder(torch.Tensor([height])))
out.append(self.embedder(torch.Tensor([crop_w])))
out.append(self.embedder(torch.Tensor([crop_h])))
out.append(self.embedder(torch.Tensor([aesthetic_score])))
flat = torch.flatten(torch.cat(out))[None, ]
return torch.cat((clip_pooled.to(flat.device), flat), dim=1)
class SDXL(BaseModel):
def __init__(self, unet_config, v_prediction=False):
super().__init__(unet_config, v_prediction)
self.embedder = Timestep(256)
def encode_adm(self, **kwargs):
clip_pooled = kwargs["pooled_output"]
width = kwargs.get("width", 768)
height = kwargs.get("height", 768)
crop_w = kwargs.get("crop_w", 0)
crop_h = kwargs.get("crop_h", 0)
target_width = kwargs.get("target_width", width)
target_height = kwargs.get("target_height", height)
print(clip_pooled.shape, width, height, crop_w, crop_h, target_width, target_height)
out = []
out.append(self.embedder(torch.Tensor([width])))
out.append(self.embedder(torch.Tensor([height])))
out.append(self.embedder(torch.Tensor([crop_w])))
out.append(self.embedder(torch.Tensor([crop_h])))
out.append(self.embedder(torch.Tensor([target_width])))
out.append(self.embedder(torch.Tensor([target_height])))
flat = torch.flatten(torch.cat(out))[None, ]
return torch.cat((clip_pooled.to(flat.device), flat), dim=1)
from . import supported_models
def count_blocks(state_dict_keys, prefix_string):
count = 0
while True:
c = False
for k in state_dict_keys:
if k.startswith(prefix_string.format(count)):
c = True
break
if c == False:
break
count += 1
return count
def detect_unet_config(state_dict, key_prefix, use_fp16):
state_dict_keys = list(state_dict.keys())
num_res_blocks = 2
unet_config = {
"use_checkpoint": False,
"image_size": 32,
"out_channels": 4,
"num_res_blocks": num_res_blocks,
"use_spatial_transformer": True,
"legacy": False
}
y_input = '{}label_emb.0.0.weight'.format(key_prefix)
if y_input in state_dict_keys:
unet_config["num_classes"] = "sequential"
unet_config["adm_in_channels"] = state_dict[y_input].shape[1]
else:
unet_config["adm_in_channels"] = None
unet_config["use_fp16"] = use_fp16
model_channels = state_dict['{}input_blocks.0.0.weight'.format(key_prefix)].shape[0]
in_channels = state_dict['{}input_blocks.0.0.weight'.format(key_prefix)].shape[1]
num_res_blocks = []
channel_mult = []
attention_resolutions = []
transformer_depth = []
context_dim = None
use_linear_in_transformer = False
current_res = 1
count = 0
last_res_blocks = 0
last_transformer_depth = 0
last_channel_mult = 0
while True:
prefix = '{}input_blocks.{}.'.format(key_prefix, count)
block_keys = sorted(list(filter(lambda a: a.startswith(prefix), state_dict_keys)))
if len(block_keys) == 0:
break
if "{}0.op.weight".format(prefix) in block_keys: #new layer
if last_transformer_depth > 0:
attention_resolutions.append(current_res)
transformer_depth.append(last_transformer_depth)
num_res_blocks.append(last_res_blocks)
channel_mult.append(last_channel_mult)
current_res *= 2
last_res_blocks = 0
last_transformer_depth = 0
last_channel_mult = 0
else:
res_block_prefix = "{}0.in_layers.0.weight".format(prefix)
if res_block_prefix in block_keys:
last_res_blocks += 1
last_channel_mult = state_dict["{}0.out_layers.3.weight".format(prefix)].shape[0] // model_channels
transformer_prefix = prefix + "1.transformer_blocks."
transformer_keys = sorted(list(filter(lambda a: a.startswith(transformer_prefix), state_dict_keys)))
if len(transformer_keys) > 0:
last_transformer_depth = count_blocks(state_dict_keys, transformer_prefix + '{}')
if context_dim is None:
context_dim = state_dict['{}0.attn2.to_k.weight'.format(transformer_prefix)].shape[1]
use_linear_in_transformer = len(state_dict['{}1.proj_in.weight'.format(prefix)].shape) == 2
count += 1
if last_transformer_depth > 0:
attention_resolutions.append(current_res)
transformer_depth.append(last_transformer_depth)
num_res_blocks.append(last_res_blocks)
channel_mult.append(last_channel_mult)
transformer_depth_middle = count_blocks(state_dict_keys, '{}middle_block.1.transformer_blocks.'.format(key_prefix) + '{}')
if len(set(num_res_blocks)) == 1:
num_res_blocks = num_res_blocks[0]
if len(set(transformer_depth)) == 1:
transformer_depth = transformer_depth[0]
unet_config["in_channels"] = in_channels
unet_config["model_channels"] = model_channels
unet_config["num_res_blocks"] = num_res_blocks
unet_config["attention_resolutions"] = attention_resolutions
unet_config["transformer_depth"] = transformer_depth
unet_config["channel_mult"] = channel_mult
unet_config["transformer_depth_middle"] = transformer_depth_middle
unet_config['use_linear_in_transformer'] = use_linear_in_transformer
unet_config["context_dim"] = context_dim
return unet_config
def model_config_from_unet(state_dict, unet_key_prefix, use_fp16):
unet_config = detect_unet_config(state_dict, unet_key_prefix, use_fp16)
for model_config in supported_models.models:
if model_config.matches(unet_config):
return model_config(unet_config)
return None
...@@ -229,7 +229,7 @@ def sampling_function(model_function, x, timestep, uncond, cond, cond_scale, con ...@@ -229,7 +229,7 @@ def sampling_function(model_function, x, timestep, uncond, cond, cond_scale, con
timestep_ = torch.cat([timestep] * batch_chunks) timestep_ = torch.cat([timestep] * batch_chunks)
if control is not None: if control is not None:
c['control'] = control.get_control(input_x, timestep_, c['c_crossattn'], len(cond_or_uncond)) c['control'] = control.get_control(input_x, timestep_, c, len(cond_or_uncond))
transformer_options = {} transformer_options = {}
if 'transformer_options' in model_options: if 'transformer_options' in model_options:
...@@ -460,8 +460,7 @@ def apply_empty_x_to_equal_area(conds, uncond, name, uncond_fill_func): ...@@ -460,8 +460,7 @@ def apply_empty_x_to_equal_area(conds, uncond, name, uncond_fill_func):
n[name] = uncond_fill_func(cond_cnets, x) n[name] = uncond_fill_func(cond_cnets, x)
uncond[temp[1]] = [o[0], n] uncond[temp[1]] = [o[0], n]
def encode_adm(model, conds, batch_size, width, height, device, prompt_type):
def encode_adm(model, conds, batch_size, device):
for t in range(len(conds)): for t in range(len(conds)):
x = conds[t] x = conds[t]
adm_out = None adm_out = None
...@@ -469,7 +468,11 @@ def encode_adm(model, conds, batch_size, device): ...@@ -469,7 +468,11 @@ def encode_adm(model, conds, batch_size, device):
adm_out = x[1]["adm"] adm_out = x[1]["adm"]
else: else:
params = x[1].copy() params = x[1].copy()
params["width"] = params.get("width", width * 8)
params["height"] = params.get("height", height * 8)
params["prompt_type"] = params.get("prompt_type", prompt_type)
adm_out = model.encode_adm(device=device, **params) adm_out = model.encode_adm(device=device, **params)
if adm_out is not None: if adm_out is not None:
x[1] = x[1].copy() x[1] = x[1].copy()
x[1]["adm_encoded"] = torch.cat([adm_out] * batch_size).to(device) x[1]["adm_encoded"] = torch.cat([adm_out] * batch_size).to(device)
...@@ -580,8 +583,8 @@ class KSampler: ...@@ -580,8 +583,8 @@ class KSampler:
precision_scope = contextlib.nullcontext precision_scope = contextlib.nullcontext
if self.model.is_adm(): if self.model.is_adm():
positive = encode_adm(self.model, positive, noise.shape[0], self.device) positive = encode_adm(self.model, positive, noise.shape[0], noise.shape[3], noise.shape[2], self.device, "positive")
negative = encode_adm(self.model, negative, noise.shape[0], self.device) negative = encode_adm(self.model, negative, noise.shape[0], noise.shape[3], noise.shape[2], self.device, "negative")
extra_args = {"cond":positive, "uncond":negative, "cond_scale": cfg, "model_options": self.model_options} extra_args = {"cond":positive, "uncond":negative, "cond_scale": cfg, "model_options": self.model_options}
......
This diff is collapsed.
...@@ -8,11 +8,14 @@ import zipfile ...@@ -8,11 +8,14 @@ import zipfile
class ClipTokenWeightEncoder: class ClipTokenWeightEncoder:
def encode_token_weights(self, token_weight_pairs): def encode_token_weights(self, token_weight_pairs):
z_empty = self.encode(self.empty_tokens) z_empty, _ = self.encode(self.empty_tokens)
output = [] output = []
first_pooled = None
for x in token_weight_pairs: for x in token_weight_pairs:
tokens = [list(map(lambda a: a[0], x))] tokens = [list(map(lambda a: a[0], x))]
z = self.encode(tokens) z, pooled = self.encode(tokens)
if first_pooled is None:
first_pooled = pooled
for i in range(len(z)): for i in range(len(z)):
for j in range(len(z[i])): for j in range(len(z[i])):
weight = x[j][1] weight = x[j][1]
...@@ -20,7 +23,7 @@ class ClipTokenWeightEncoder: ...@@ -20,7 +23,7 @@ class ClipTokenWeightEncoder:
output += [z] output += [z]
if (len(output) == 0): if (len(output) == 0):
return self.encode(self.empty_tokens) return self.encode(self.empty_tokens)
return torch.cat(output, dim=-2).cpu() return torch.cat(output, dim=-2).cpu(), first_pooled.cpu()
class SD1ClipModel(torch.nn.Module, ClipTokenWeightEncoder): class SD1ClipModel(torch.nn.Module, ClipTokenWeightEncoder):
"""Uses the CLIP transformer encoder for text (from huggingface)""" """Uses the CLIP transformer encoder for text (from huggingface)"""
...@@ -50,6 +53,8 @@ class SD1ClipModel(torch.nn.Module, ClipTokenWeightEncoder): ...@@ -50,6 +53,8 @@ class SD1ClipModel(torch.nn.Module, ClipTokenWeightEncoder):
self.layer = layer self.layer = layer
self.layer_idx = None self.layer_idx = None
self.empty_tokens = [[49406] + [49407] * 76] self.empty_tokens = [[49406] + [49407] * 76]
self.text_projection = None
self.layer_norm_hidden_state = True
if layer == "hidden": if layer == "hidden":
assert layer_idx is not None assert layer_idx is not None
assert abs(layer_idx) <= 12 assert abs(layer_idx) <= 12
...@@ -112,9 +117,13 @@ class SD1ClipModel(torch.nn.Module, ClipTokenWeightEncoder): ...@@ -112,9 +117,13 @@ class SD1ClipModel(torch.nn.Module, ClipTokenWeightEncoder):
z = outputs.pooler_output[:, None, :] z = outputs.pooler_output[:, None, :]
else: else:
z = outputs.hidden_states[self.layer_idx] z = outputs.hidden_states[self.layer_idx]
if self.layer_norm_hidden_state:
z = self.transformer.text_model.final_layer_norm(z) z = self.transformer.text_model.final_layer_norm(z)
return z pooled_output = outputs.pooler_output
if self.text_projection is not None:
pooled_output = pooled_output @ self.text_projection
return z, pooled_output
def encode(self, tokens): def encode(self, tokens):
return self(tokens) return self(tokens)
...@@ -204,7 +213,7 @@ def expand_directory_list(directories): ...@@ -204,7 +213,7 @@ def expand_directory_list(directories):
dirs.add(root) dirs.add(root)
return list(dirs) return list(dirs)
def load_embed(embedding_name, embedding_directory): def load_embed(embedding_name, embedding_directory, embedding_size):
if isinstance(embedding_directory, str): if isinstance(embedding_directory, str):
embedding_directory = [embedding_directory] embedding_directory = [embedding_directory]
...@@ -253,13 +262,23 @@ def load_embed(embedding_name, embedding_directory): ...@@ -253,13 +262,23 @@ def load_embed(embedding_name, embedding_directory):
if embed_out is None: if embed_out is None:
if 'string_to_param' in embed: if 'string_to_param' in embed:
values = embed['string_to_param'].values() values = embed['string_to_param'].values()
embed_out = next(iter(values))
elif isinstance(embed, list):
out_list = []
for x in range(len(embed)):
for k in embed[x]:
t = embed[x][k]
if t.shape[-1] != embedding_size:
continue
out_list.append(t.reshape(-1, t.shape[-1]))
embed_out = torch.cat(out_list, dim=0)
else: else:
values = embed.values() values = embed.values()
embed_out = next(iter(values)) embed_out = next(iter(values))
return embed_out return embed_out
class SD1Tokenizer: class SD1Tokenizer:
def __init__(self, tokenizer_path=None, max_length=77, pad_with_end=True, embedding_directory=None): def __init__(self, tokenizer_path=None, max_length=77, pad_with_end=True, embedding_directory=None, embedding_size=768):
if tokenizer_path is None: if tokenizer_path is None:
tokenizer_path = os.path.join(os.path.dirname(os.path.realpath(__file__)), "sd1_tokenizer") tokenizer_path = os.path.join(os.path.dirname(os.path.realpath(__file__)), "sd1_tokenizer")
self.tokenizer = CLIPTokenizer.from_pretrained(tokenizer_path) self.tokenizer = CLIPTokenizer.from_pretrained(tokenizer_path)
...@@ -275,17 +294,18 @@ class SD1Tokenizer: ...@@ -275,17 +294,18 @@ class SD1Tokenizer:
self.embedding_directory = embedding_directory self.embedding_directory = embedding_directory
self.max_word_length = 8 self.max_word_length = 8
self.embedding_identifier = "embedding:" self.embedding_identifier = "embedding:"
self.embedding_size = embedding_size
def _try_get_embedding(self, embedding_name:str): def _try_get_embedding(self, embedding_name:str):
''' '''
Takes a potential embedding name and tries to retrieve it. Takes a potential embedding name and tries to retrieve it.
Returns a Tuple consisting of the embedding and any leftover string, embedding can be None. Returns a Tuple consisting of the embedding and any leftover string, embedding can be None.
''' '''
embed = load_embed(embedding_name, self.embedding_directory) embed = load_embed(embedding_name, self.embedding_directory, self.embedding_size)
if embed is None: if embed is None:
stripped = embedding_name.strip(',') stripped = embedding_name.strip(',')
if len(stripped) < len(embedding_name): if len(stripped) < len(embedding_name):
embed = load_embed(stripped, self.embedding_directory) embed = load_embed(stripped, self.embedding_directory, self.embedding_size)
return (embed, embedding_name[len(stripped):]) return (embed, embedding_name[len(stripped):])
return (embed, "") return (embed, "")
......
...@@ -31,4 +31,4 @@ class SD2ClipModel(sd1_clip.SD1ClipModel): ...@@ -31,4 +31,4 @@ class SD2ClipModel(sd1_clip.SD1ClipModel):
class SD2Tokenizer(sd1_clip.SD1Tokenizer): class SD2Tokenizer(sd1_clip.SD1Tokenizer):
def __init__(self, tokenizer_path=None, embedding_directory=None): def __init__(self, tokenizer_path=None, embedding_directory=None):
super().__init__(tokenizer_path, pad_with_end=False, embedding_directory=embedding_directory) super().__init__(tokenizer_path, pad_with_end=False, embedding_directory=embedding_directory, embedding_size=1024)
from comfy import sd1_clip
import torch
import os
class SDXLClipG(sd1_clip.SD1ClipModel):
def __init__(self, device="cpu", max_length=77, freeze=True, layer="penultimate", layer_idx=None):
textmodel_json_config = os.path.join(os.path.dirname(os.path.realpath(__file__)), "clip_config_bigg.json")
super().__init__(device=device, freeze=freeze, textmodel_json_config=textmodel_json_config)
self.empty_tokens = [[49406] + [49407] + [0] * 75]
self.text_projection = torch.nn.Parameter(torch.empty(1280, 1280))
self.layer_norm_hidden_state = False
if layer == "last":
pass
elif layer == "penultimate":
layer_idx = -1
self.clip_layer(layer_idx)
elif self.layer == "hidden":
assert layer_idx is not None
assert abs(layer_idx) < 32
self.clip_layer(layer_idx)
else:
raise NotImplementedError()
def clip_layer(self, layer_idx):
if layer_idx < 0:
layer_idx -= 1 #The real last layer of SD2.x clip is the penultimate one. The last one might contain garbage.
if abs(layer_idx) >= 32:
self.layer = "hidden"
self.layer_idx = -2
else:
self.layer = "hidden"
self.layer_idx = layer_idx
class SDXLClipGTokenizer(sd1_clip.SD1Tokenizer):
def __init__(self, tokenizer_path=None, embedding_directory=None):
super().__init__(tokenizer_path, pad_with_end=False, embedding_directory=embedding_directory, embedding_size=1280)
class SDXLTokenizer(sd1_clip.SD1Tokenizer):
def __init__(self, embedding_directory=None):
self.clip_l = sd1_clip.SD1Tokenizer(embedding_directory=embedding_directory)
self.clip_g = SDXLClipGTokenizer(embedding_directory=embedding_directory)
def tokenize_with_weights(self, text:str, return_word_ids=False):
out = {}
out["g"] = self.clip_g.tokenize_with_weights(text, return_word_ids)
out["l"] = self.clip_l.tokenize_with_weights(text, return_word_ids)
return out
def untokenize(self, token_weight_pair):
return self.clip_g.untokenize(token_weight_pair)
class SDXLClipModel(torch.nn.Module):
def __init__(self, device="cpu"):
super().__init__()
self.clip_l = sd1_clip.SD1ClipModel(layer="hidden", layer_idx=11, device=device)
self.clip_l.layer_norm_hidden_state = False
self.clip_g = SDXLClipG(device=device)
def clip_layer(self, layer_idx):
self.clip_l.clip_layer(layer_idx)
self.clip_g.clip_layer(layer_idx)
def encode_token_weights(self, token_weight_pairs):
token_weight_pairs_g = token_weight_pairs["g"]
token_weight_pairs_l = token_weight_pairs["l"]
g_out, g_pooled = self.clip_g.encode_token_weights(token_weight_pairs_g)
l_out, l_pooled = self.clip_l.encode_token_weights(token_weight_pairs_l)
return torch.cat([l_out, g_out], dim=-1), g_pooled
class SDXLRefinerClipModel(torch.nn.Module):
def __init__(self, device="cpu"):
super().__init__()
self.clip_g = SDXLClipG(device=device)
def clip_layer(self, layer_idx):
self.clip_g.clip_layer(layer_idx)
def encode_token_weights(self, token_weight_pairs):
token_weight_pairs_g = token_weight_pairs["g"]
g_out, g_pooled = self.clip_g.encode_token_weights(token_weight_pairs_g)
return g_out, g_pooled
import torch
from . import model_base
from . import utils
from . import sd1_clip
from . import sd2_clip
from . import sdxl_clip
from . import supported_models_base
class SD15(supported_models_base.BASE):
unet_config = {
"context_dim": 768,
"model_channels": 320,
"use_linear_in_transformer": False,
"adm_in_channels": None,
}
unet_extra_config = {
"num_heads": 8,
"num_head_channels": -1,
}
vae_scale_factor = 0.18215
def process_clip_state_dict(self, state_dict):
k = list(state_dict.keys())
for x in k:
if x.startswith("cond_stage_model.transformer.") and not x.startswith("cond_stage_model.transformer.text_model."):
y = x.replace("cond_stage_model.transformer.", "cond_stage_model.transformer.text_model.")
state_dict[y] = state_dict.pop(x)
if 'cond_stage_model.transformer.text_model.embeddings.position_ids' in state_dict:
ids = state_dict['cond_stage_model.transformer.text_model.embeddings.position_ids']
if ids.dtype == torch.float32:
state_dict['cond_stage_model.transformer.text_model.embeddings.position_ids'] = ids.round()
return state_dict
def clip_target(self):
return supported_models_base.ClipTarget(sd1_clip.SD1Tokenizer, sd1_clip.SD1ClipModel)
class SD20(supported_models_base.BASE):
unet_config = {
"context_dim": 1024,
"model_channels": 320,
"use_linear_in_transformer": True,
"adm_in_channels": None,
}
vae_scale_factor = 0.18215
def v_prediction(self, state_dict):
if self.unet_config["in_channels"] == 4: #SD2.0 inpainting models are not v prediction
k = "model.diffusion_model.output_blocks.11.1.transformer_blocks.0.norm1.bias"
out = state_dict[k]
if torch.std(out, unbiased=False) > 0.09: # not sure how well this will actually work. I guess we will find out.
return True
return False
def process_clip_state_dict(self, state_dict):
state_dict = utils.transformers_convert(state_dict, "cond_stage_model.model.", "cond_stage_model.transformer.text_model.", 24)
return state_dict
def clip_target(self):
return supported_models_base.ClipTarget(sd2_clip.SD2Tokenizer, sd2_clip.SD2ClipModel)
class SD21UnclipL(SD20):
unet_config = {
"context_dim": 1024,
"model_channels": 320,
"use_linear_in_transformer": True,
"adm_in_channels": 1536,
}
clip_vision_prefix = "embedder.model.visual."
noise_aug_config = {"noise_schedule_config": {"timesteps": 1000, "beta_schedule": "squaredcos_cap_v2"}, "timestep_dim": 768}
class SD21UnclipH(SD20):
unet_config = {
"context_dim": 1024,
"model_channels": 320,
"use_linear_in_transformer": True,
"adm_in_channels": 2048,
}
clip_vision_prefix = "embedder.model.visual."
noise_aug_config = {"noise_schedule_config": {"timesteps": 1000, "beta_schedule": "squaredcos_cap_v2"}, "timestep_dim": 1024}
class SDXLRefiner(supported_models_base.BASE):
unet_config = {
"model_channels": 384,
"use_linear_in_transformer": True,
"context_dim": 1280,
"adm_in_channels": 2560,
"transformer_depth": [0, 4, 4, 0],
}
vae_scale_factor = 0.13025
def get_model(self, state_dict):
return model_base.SDXLRefiner(self.unet_config)
def process_clip_state_dict(self, state_dict):
keys_to_replace = {}
replace_prefix = {}
state_dict = utils.transformers_convert(state_dict, "conditioner.embedders.0.model.", "cond_stage_model.clip_g.transformer.text_model.", 32)
keys_to_replace["conditioner.embedders.0.model.text_projection"] = "cond_stage_model.clip_g.text_projection"
state_dict = supported_models_base.state_dict_key_replace(state_dict, keys_to_replace)
return state_dict
def clip_target(self):
return supported_models_base.ClipTarget(sdxl_clip.SDXLTokenizer, sdxl_clip.SDXLRefinerClipModel)
class SDXL(supported_models_base.BASE):
unet_config = {
"model_channels": 320,
"use_linear_in_transformer": True,
"transformer_depth": [0, 2, 10],
"context_dim": 2048,
"adm_in_channels": 2816
}
vae_scale_factor = 0.13025
def get_model(self, state_dict):
return model_base.SDXL(self.unet_config)
def process_clip_state_dict(self, state_dict):
keys_to_replace = {}
replace_prefix = {}
replace_prefix["conditioner.embedders.0.transformer.text_model"] = "cond_stage_model.clip_l.transformer.text_model"
state_dict = utils.transformers_convert(state_dict, "conditioner.embedders.1.model.", "cond_stage_model.clip_g.transformer.text_model.", 32)
keys_to_replace["conditioner.embedders.1.model.text_projection"] = "cond_stage_model.clip_g.text_projection"
state_dict = supported_models_base.state_dict_prefix_replace(state_dict, replace_prefix)
state_dict = supported_models_base.state_dict_key_replace(state_dict, keys_to_replace)
return state_dict
def clip_target(self):
return supported_models_base.ClipTarget(sdxl_clip.SDXLTokenizer, sdxl_clip.SDXLClipModel)
models = [SD15, SD20, SD21UnclipL, SD21UnclipH, SDXLRefiner, SDXL]
import torch
from . import model_base
from . import utils
def state_dict_key_replace(state_dict, keys_to_replace):
for x in keys_to_replace:
if x in state_dict:
state_dict[keys_to_replace[x]] = state_dict.pop(x)
return state_dict
def state_dict_prefix_replace(state_dict, replace_prefix):
for rp in replace_prefix:
replace = list(map(lambda a: (a, "{}{}".format(replace_prefix[rp], a[len(rp):])), filter(lambda a: a.startswith(rp), state_dict.keys())))
for x in replace:
state_dict[x[1]] = state_dict.pop(x[0])
return state_dict
class ClipTarget:
def __init__(self, tokenizer, clip):
self.clip = clip
self.tokenizer = tokenizer
self.params = {}
class BASE:
unet_config = {}
unet_extra_config = {
"num_heads": -1,
"num_head_channels": 64,
}
clip_prefix = []
clip_vision_prefix = None
noise_aug_config = None
@classmethod
def matches(s, unet_config):
for k in s.unet_config:
if s.unet_config[k] != unet_config[k]:
return False
return True
def v_prediction(self, state_dict):
return False
def inpaint_model(self):
return self.unet_config["in_channels"] > 4
def __init__(self, unet_config):
self.unet_config = unet_config
for x in self.unet_extra_config:
self.unet_config[x] = self.unet_extra_config[x]
def get_model(self, state_dict):
if self.inpaint_model():
return model_base.SDInpaint(self.unet_config, v_prediction=self.v_prediction(state_dict))
elif self.noise_aug_config is not None:
return model_base.SD21UNCLIP(self.unet_config, self.noise_aug_config, v_prediction=self.v_prediction(state_dict))
else:
return model_base.BaseModel(self.unet_config, v_prediction=self.v_prediction(state_dict))
def process_clip_state_dict(self, state_dict):
return state_dict
...@@ -26,10 +26,10 @@ def load_torch_file(ckpt, safe_load=False): ...@@ -26,10 +26,10 @@ def load_torch_file(ckpt, safe_load=False):
def transformers_convert(sd, prefix_from, prefix_to, number): def transformers_convert(sd, prefix_from, prefix_to, number):
keys_to_replace = { keys_to_replace = {
"{}.positional_embedding": "{}.embeddings.position_embedding.weight", "{}positional_embedding": "{}embeddings.position_embedding.weight",
"{}.token_embedding.weight": "{}.embeddings.token_embedding.weight", "{}token_embedding.weight": "{}embeddings.token_embedding.weight",
"{}.ln_final.weight": "{}.final_layer_norm.weight", "{}ln_final.weight": "{}final_layer_norm.weight",
"{}.ln_final.bias": "{}.final_layer_norm.bias", "{}ln_final.bias": "{}final_layer_norm.bias",
} }
for k in keys_to_replace: for k in keys_to_replace:
...@@ -48,19 +48,19 @@ def transformers_convert(sd, prefix_from, prefix_to, number): ...@@ -48,19 +48,19 @@ def transformers_convert(sd, prefix_from, prefix_to, number):
for resblock in range(number): for resblock in range(number):
for x in resblock_to_replace: for x in resblock_to_replace:
for y in ["weight", "bias"]: for y in ["weight", "bias"]:
k = "{}.transformer.resblocks.{}.{}.{}".format(prefix_from, resblock, x, y) k = "{}transformer.resblocks.{}.{}.{}".format(prefix_from, resblock, x, y)
k_to = "{}.encoder.layers.{}.{}.{}".format(prefix_to, resblock, resblock_to_replace[x], y) k_to = "{}encoder.layers.{}.{}.{}".format(prefix_to, resblock, resblock_to_replace[x], y)
if k in sd: if k in sd:
sd[k_to] = sd.pop(k) sd[k_to] = sd.pop(k)
for y in ["weight", "bias"]: for y in ["weight", "bias"]:
k_from = "{}.transformer.resblocks.{}.attn.in_proj_{}".format(prefix_from, resblock, y) k_from = "{}transformer.resblocks.{}.attn.in_proj_{}".format(prefix_from, resblock, y)
if k_from in sd: if k_from in sd:
weights = sd.pop(k_from) weights = sd.pop(k_from)
shape_from = weights.shape[0] // 3 shape_from = weights.shape[0] // 3
for x in range(3): for x in range(3):
p = ["self_attn.q_proj", "self_attn.k_proj", "self_attn.v_proj"] p = ["self_attn.q_proj", "self_attn.k_proj", "self_attn.v_proj"]
k_to = "{}.encoder.layers.{}.{}.{}".format(prefix_to, resblock, p[x], y) k_to = "{}encoder.layers.{}.{}.{}".format(prefix_to, resblock, p[x], y)
sd[k_to] = weights[shape_from*x:shape_from*(x + 1)] sd[k_to] = weights[shape_from*x:shape_from*(x + 1)]
return sd return sd
......
...@@ -48,7 +48,9 @@ class CLIPTextEncode: ...@@ -48,7 +48,9 @@ class CLIPTextEncode:
CATEGORY = "conditioning" CATEGORY = "conditioning"
def encode(self, clip, text): def encode(self, clip, text):
return ([[clip.encode(text), {}]], ) tokens = clip.tokenize(text)
cond, pooled = clip.encode_from_tokens(tokens, return_pooled=True)
return ([[cond, {"pooled_output": pooled}]], )
class ConditioningCombine: class ConditioningCombine:
@classmethod @classmethod
...@@ -1344,7 +1346,7 @@ NODE_CLASS_MAPPINGS = { ...@@ -1344,7 +1346,7 @@ NODE_CLASS_MAPPINGS = {
"DiffusersLoader": DiffusersLoader, "DiffusersLoader": DiffusersLoader,
"LoadLatent": LoadLatent, "LoadLatent": LoadLatent,
"SaveLatent": SaveLatent "SaveLatent": SaveLatent,
} }
NODE_DISPLAY_NAME_MAPPINGS = { NODE_DISPLAY_NAME_MAPPINGS = {
......
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment