Commit f0a2b81c authored by comfyanonymous's avatar comfyanonymous
Browse files

Cleanup: Remove a bunch of useless files.

parent 74297f5f
...@@ -14,8 +14,7 @@ from ..ldm.modules.diffusionmodules.util import ( ...@@ -14,8 +14,7 @@ from ..ldm.modules.diffusionmodules.util import (
from ..ldm.modules.attention import SpatialTransformer from ..ldm.modules.attention import SpatialTransformer
from ..ldm.modules.diffusionmodules.openaimodel import UNetModel, TimestepEmbedSequential, ResBlock, Downsample, AttentionBlock from ..ldm.modules.diffusionmodules.openaimodel import UNetModel, TimestepEmbedSequential, ResBlock, Downsample, AttentionBlock
from ..ldm.models.diffusion.ddpm import LatentDiffusion from ..ldm.util import exists
from ..ldm.util import log_txt_as_img, exists, instantiate_from_config
class ControlledUnetModel(UNetModel): class ControlledUnetModel(UNetModel):
......
...@@ -3,7 +3,6 @@ import os ...@@ -3,7 +3,6 @@ import os
import yaml import yaml
import folder_paths import folder_paths
from comfy.ldm.util import instantiate_from_config
from comfy.sd import ModelPatcher, load_model_weights, CLIP, VAE, load_checkpoint from comfy.sd import ModelPatcher, load_model_weights, CLIP, VAE, load_checkpoint
import os.path as osp import os.path as osp
import re import re
......
import torch
from ldm.modules.midas.api import load_midas_transform
class AddMiDaS(object):
def __init__(self, model_type):
super().__init__()
self.transform = load_midas_transform(model_type)
def pt2np(self, x):
x = ((x + 1.0) * .5).detach().cpu().numpy()
return x
def np2pt(self, x):
x = torch.from_numpy(x) * 2 - 1.
return x
def __call__(self, sample):
# sample['jpg'] is tensor hwc in [-1, 1] at this point
x = self.pt2np(sample['jpg'])
x = self.transform({"image": x})["image"]
sample['midas_in'] = x
return sample
\ No newline at end of file
"""
wild mixture of
https://github.com/lucidrains/denoising-diffusion-pytorch/blob/7706bdfc6f527f58d33f84b7b522e61e6e3164b3/denoising_diffusion_pytorch/denoising_diffusion_pytorch.py
https://github.com/openai/improved-diffusion/blob/e94489283bb876ac1477d5dd7709bbbd2d9902ce/improved_diffusion/gaussian_diffusion.py
https://github.com/CompVis/taming-transformers
-- merci
"""
import torch
import torch.nn as nn
import numpy as np
# import pytorch_lightning as pl
from torch.optim.lr_scheduler import LambdaLR
from einops import rearrange, repeat
from contextlib import contextmanager, nullcontext
from functools import partial
import itertools
from tqdm import tqdm
from torchvision.utils import make_grid
# from pytorch_lightning.utilities.distributed import rank_zero_only
from comfy.ldm.util import log_txt_as_img, exists, default, ismap, isimage, mean_flat, count_params, instantiate_from_config
from comfy.ldm.modules.ema import LitEma
from comfy.ldm.modules.distributions.distributions import normal_kl, DiagonalGaussianDistribution
from ..autoencoder import IdentityFirstStage, AutoencoderKL
from comfy.ldm.modules.diffusionmodules.util import make_beta_schedule, extract_into_tensor, noise_like
from .ddim import DDIMSampler
__conditioning_keys__ = {'concat': 'c_concat',
'crossattn': 'c_crossattn',
'adm': 'y'}
def disabled_train(self, mode=True):
"""Overwrite model.train with this function to make sure train/eval mode
does not change anymore."""
return self
def uniform_on_device(r1, r2, shape, device):
return (r1 - r2) * torch.rand(*shape, device=device) + r2
# class DDPM(pl.LightningModule):
class DDPM(torch.nn.Module):
# classic DDPM with Gaussian diffusion, in image space
def __init__(self,
unet_config,
timesteps=1000,
beta_schedule="linear",
loss_type="l2",
ckpt_path=None,
ignore_keys=[],
load_only_unet=False,
monitor="val/loss",
use_ema=True,
first_stage_key="image",
image_size=256,
channels=3,
log_every_t=100,
clip_denoised=True,
linear_start=1e-4,
linear_end=2e-2,
cosine_s=8e-3,
given_betas=None,
original_elbo_weight=0.,
v_posterior=0., # weight for choosing posterior variance as sigma = (1-v) * beta_tilde + v * beta
l_simple_weight=1.,
conditioning_key=None,
parameterization="eps", # all assuming fixed variance schedules
scheduler_config=None,
use_positional_encodings=False,
learn_logvar=False,
logvar_init=0.,
make_it_fit=False,
ucg_training=None,
reset_ema=False,
reset_num_ema_updates=False,
):
super().__init__()
assert parameterization in ["eps", "x0", "v"], 'currently only supporting "eps" and "x0" and "v"'
self.parameterization = parameterization
print(f"{self.__class__.__name__}: Running in {self.parameterization}-prediction mode")
self.cond_stage_model = None
self.clip_denoised = clip_denoised
self.log_every_t = log_every_t
self.first_stage_key = first_stage_key
self.image_size = image_size # try conv?
self.channels = channels
self.use_positional_encodings = use_positional_encodings
self.model = DiffusionWrapper(unet_config, conditioning_key)
count_params(self.model, verbose=True)
self.use_ema = use_ema
if self.use_ema:
self.model_ema = LitEma(self.model)
print(f"Keeping EMAs of {len(list(self.model_ema.buffers()))}.")
self.use_scheduler = scheduler_config is not None
if self.use_scheduler:
self.scheduler_config = scheduler_config
self.v_posterior = v_posterior
self.original_elbo_weight = original_elbo_weight
self.l_simple_weight = l_simple_weight
if monitor is not None:
self.monitor = monitor
self.make_it_fit = make_it_fit
if reset_ema: assert exists(ckpt_path)
if ckpt_path is not None:
self.init_from_ckpt(ckpt_path, ignore_keys=ignore_keys, only_model=load_only_unet)
if reset_ema:
assert self.use_ema
print(f"Resetting ema to pure model weights. This is useful when restoring from an ema-only checkpoint.")
self.model_ema = LitEma(self.model)
if reset_num_ema_updates:
print(" +++++++++++ WARNING: RESETTING NUM_EMA UPDATES TO ZERO +++++++++++ ")
assert self.use_ema
self.model_ema.reset_num_updates()
self.register_schedule(given_betas=given_betas, beta_schedule=beta_schedule, timesteps=timesteps,
linear_start=linear_start, linear_end=linear_end, cosine_s=cosine_s)
self.loss_type = loss_type
self.learn_logvar = learn_logvar
self.logvar = torch.full(fill_value=logvar_init, size=(self.num_timesteps,))
if self.learn_logvar:
self.logvar = nn.Parameter(self.logvar, requires_grad=True)
self.ucg_training = ucg_training or dict()
if self.ucg_training:
self.ucg_prng = np.random.RandomState()
def register_schedule(self, given_betas=None, beta_schedule="linear", timesteps=1000,
linear_start=1e-4, linear_end=2e-2, cosine_s=8e-3):
if exists(given_betas):
betas = given_betas
else:
betas = make_beta_schedule(beta_schedule, timesteps, linear_start=linear_start, linear_end=linear_end,
cosine_s=cosine_s)
alphas = 1. - betas
alphas_cumprod = np.cumprod(alphas, axis=0)
alphas_cumprod_prev = np.append(1., alphas_cumprod[:-1])
timesteps, = betas.shape
self.num_timesteps = int(timesteps)
self.linear_start = linear_start
self.linear_end = linear_end
assert alphas_cumprod.shape[0] == self.num_timesteps, 'alphas have to be defined for each timestep'
to_torch = partial(torch.tensor, dtype=torch.float32)
self.register_buffer('betas', to_torch(betas))
self.register_buffer('alphas_cumprod', to_torch(alphas_cumprod))
self.register_buffer('alphas_cumprod_prev', to_torch(alphas_cumprod_prev))
# calculations for diffusion q(x_t | x_{t-1}) and others
self.register_buffer('sqrt_alphas_cumprod', to_torch(np.sqrt(alphas_cumprod)))
self.register_buffer('sqrt_one_minus_alphas_cumprod', to_torch(np.sqrt(1. - alphas_cumprod)))
self.register_buffer('log_one_minus_alphas_cumprod', to_torch(np.log(1. - alphas_cumprod)))
self.register_buffer('sqrt_recip_alphas_cumprod', to_torch(np.sqrt(1. / alphas_cumprod)))
self.register_buffer('sqrt_recipm1_alphas_cumprod', to_torch(np.sqrt(1. / alphas_cumprod - 1)))
# calculations for posterior q(x_{t-1} | x_t, x_0)
posterior_variance = (1 - self.v_posterior) * betas * (1. - alphas_cumprod_prev) / (
1. - alphas_cumprod) + self.v_posterior * betas
# above: equal to 1. / (1. / (1. - alpha_cumprod_tm1) + alpha_t / beta_t)
self.register_buffer('posterior_variance', to_torch(posterior_variance))
# below: log calculation clipped because the posterior variance is 0 at the beginning of the diffusion chain
self.register_buffer('posterior_log_variance_clipped', to_torch(np.log(np.maximum(posterior_variance, 1e-20))))
self.register_buffer('posterior_mean_coef1', to_torch(
betas * np.sqrt(alphas_cumprod_prev) / (1. - alphas_cumprod)))
self.register_buffer('posterior_mean_coef2', to_torch(
(1. - alphas_cumprod_prev) * np.sqrt(alphas) / (1. - alphas_cumprod)))
if self.parameterization == "eps":
lvlb_weights = self.betas ** 2 / (
2 * self.posterior_variance * to_torch(alphas) * (1 - self.alphas_cumprod))
elif self.parameterization == "x0":
lvlb_weights = 0.5 * np.sqrt(torch.Tensor(alphas_cumprod)) / (2. * 1 - torch.Tensor(alphas_cumprod))
elif self.parameterization == "v":
lvlb_weights = torch.ones_like(self.betas ** 2 / (
2 * self.posterior_variance * to_torch(alphas) * (1 - self.alphas_cumprod)))
else:
raise NotImplementedError("mu not supported")
lvlb_weights[0] = lvlb_weights[1]
self.register_buffer('lvlb_weights', lvlb_weights, persistent=False)
assert not torch.isnan(self.lvlb_weights).all()
@contextmanager
def ema_scope(self, context=None):
if self.use_ema:
self.model_ema.store(self.model.parameters())
self.model_ema.copy_to(self.model)
if context is not None:
print(f"{context}: Switched to EMA weights")
try:
yield None
finally:
if self.use_ema:
self.model_ema.restore(self.model.parameters())
if context is not None:
print(f"{context}: Restored training weights")
@torch.no_grad()
def init_from_ckpt(self, path, ignore_keys=list(), only_model=False):
sd = torch.load(path, map_location="cpu")
if "state_dict" in list(sd.keys()):
sd = sd["state_dict"]
keys = list(sd.keys())
for k in keys:
for ik in ignore_keys:
if k.startswith(ik):
print("Deleting key {} from state_dict.".format(k))
del sd[k]
if self.make_it_fit:
n_params = len([name for name, _ in
itertools.chain(self.named_parameters(),
self.named_buffers())])
for name, param in tqdm(
itertools.chain(self.named_parameters(),
self.named_buffers()),
desc="Fitting old weights to new weights",
total=n_params
):
if not name in sd:
continue
old_shape = sd[name].shape
new_shape = param.shape
assert len(old_shape) == len(new_shape)
if len(new_shape) > 2:
# we only modify first two axes
assert new_shape[2:] == old_shape[2:]
# assumes first axis corresponds to output dim
if not new_shape == old_shape:
new_param = param.clone()
old_param = sd[name]
if len(new_shape) == 1:
for i in range(new_param.shape[0]):
new_param[i] = old_param[i % old_shape[0]]
elif len(new_shape) >= 2:
for i in range(new_param.shape[0]):
for j in range(new_param.shape[1]):
new_param[i, j] = old_param[i % old_shape[0], j % old_shape[1]]
n_used_old = torch.ones(old_shape[1])
for j in range(new_param.shape[1]):
n_used_old[j % old_shape[1]] += 1
n_used_new = torch.zeros(new_shape[1])
for j in range(new_param.shape[1]):
n_used_new[j] = n_used_old[j % old_shape[1]]
n_used_new = n_used_new[None, :]
while len(n_used_new.shape) < len(new_shape):
n_used_new = n_used_new.unsqueeze(-1)
new_param /= n_used_new
sd[name] = new_param
missing, unexpected = self.load_state_dict(sd, strict=False) if not only_model else self.model.load_state_dict(
sd, strict=False)
print(f"Restored from {path} with {len(missing)} missing and {len(unexpected)} unexpected keys")
if len(missing) > 0:
print(f"Missing Keys:\n {missing}")
if len(unexpected) > 0:
print(f"\nUnexpected Keys:\n {unexpected}")
def q_mean_variance(self, x_start, t):
"""
Get the distribution q(x_t | x_0).
:param x_start: the [N x C x ...] tensor of noiseless inputs.
:param t: the number of diffusion steps (minus 1). Here, 0 means one step.
:return: A tuple (mean, variance, log_variance), all of x_start's shape.
"""
mean = (extract_into_tensor(self.sqrt_alphas_cumprod, t, x_start.shape) * x_start)
variance = extract_into_tensor(1.0 - self.alphas_cumprod, t, x_start.shape)
log_variance = extract_into_tensor(self.log_one_minus_alphas_cumprod, t, x_start.shape)
return mean, variance, log_variance
def predict_start_from_noise(self, x_t, t, noise):
return (
extract_into_tensor(self.sqrt_recip_alphas_cumprod, t, x_t.shape) * x_t -
extract_into_tensor(self.sqrt_recipm1_alphas_cumprod, t, x_t.shape) * noise
)
def predict_start_from_z_and_v(self, x_t, t, v):
# self.register_buffer('sqrt_alphas_cumprod', to_torch(np.sqrt(alphas_cumprod)))
# self.register_buffer('sqrt_one_minus_alphas_cumprod', to_torch(np.sqrt(1. - alphas_cumprod)))
return (
extract_into_tensor(self.sqrt_alphas_cumprod, t, x_t.shape) * x_t -
extract_into_tensor(self.sqrt_one_minus_alphas_cumprod, t, x_t.shape) * v
)
def predict_eps_from_z_and_v(self, x_t, t, v):
return (
extract_into_tensor(self.sqrt_alphas_cumprod, t, x_t.shape) * v +
extract_into_tensor(self.sqrt_one_minus_alphas_cumprod, t, x_t.shape) * x_t
)
def q_posterior(self, x_start, x_t, t):
posterior_mean = (
extract_into_tensor(self.posterior_mean_coef1, t, x_t.shape) * x_start +
extract_into_tensor(self.posterior_mean_coef2, t, x_t.shape) * x_t
)
posterior_variance = extract_into_tensor(self.posterior_variance, t, x_t.shape)
posterior_log_variance_clipped = extract_into_tensor(self.posterior_log_variance_clipped, t, x_t.shape)
return posterior_mean, posterior_variance, posterior_log_variance_clipped
def p_mean_variance(self, x, t, clip_denoised: bool):
model_out = self.model(x, t)
if self.parameterization == "eps":
x_recon = self.predict_start_from_noise(x, t=t, noise=model_out)
elif self.parameterization == "x0":
x_recon = model_out
if clip_denoised:
x_recon.clamp_(-1., 1.)
model_mean, posterior_variance, posterior_log_variance = self.q_posterior(x_start=x_recon, x_t=x, t=t)
return model_mean, posterior_variance, posterior_log_variance
@torch.no_grad()
def p_sample(self, x, t, clip_denoised=True, repeat_noise=False):
b, *_, device = *x.shape, x.device
model_mean, _, model_log_variance = self.p_mean_variance(x=x, t=t, clip_denoised=clip_denoised)
noise = noise_like(x.shape, device, repeat_noise)
# no noise when t == 0
nonzero_mask = (1 - (t == 0).float()).reshape(b, *((1,) * (len(x.shape) - 1)))
return model_mean + nonzero_mask * (0.5 * model_log_variance).exp() * noise
@torch.no_grad()
def p_sample_loop(self, shape, return_intermediates=False):
device = self.betas.device
b = shape[0]
img = torch.randn(shape, device=device)
intermediates = [img]
for i in tqdm(reversed(range(0, self.num_timesteps)), desc='Sampling t', total=self.num_timesteps):
img = self.p_sample(img, torch.full((b,), i, device=device, dtype=torch.long),
clip_denoised=self.clip_denoised)
if i % self.log_every_t == 0 or i == self.num_timesteps - 1:
intermediates.append(img)
if return_intermediates:
return img, intermediates
return img
@torch.no_grad()
def sample(self, batch_size=16, return_intermediates=False):
image_size = self.image_size
channels = self.channels
return self.p_sample_loop((batch_size, channels, image_size, image_size),
return_intermediates=return_intermediates)
def q_sample(self, x_start, t, noise=None):
noise = default(noise, lambda: torch.randn_like(x_start))
return (extract_into_tensor(self.sqrt_alphas_cumprod, t, x_start.shape) * x_start +
extract_into_tensor(self.sqrt_one_minus_alphas_cumprod, t, x_start.shape) * noise)
def get_v(self, x, noise, t):
return (
extract_into_tensor(self.sqrt_alphas_cumprod, t, x.shape) * noise -
extract_into_tensor(self.sqrt_one_minus_alphas_cumprod, t, x.shape) * x
)
def get_loss(self, pred, target, mean=True):
if self.loss_type == 'l1':
loss = (target - pred).abs()
if mean:
loss = loss.mean()
elif self.loss_type == 'l2':
if mean:
loss = torch.nn.functional.mse_loss(target, pred)
else:
loss = torch.nn.functional.mse_loss(target, pred, reduction='none')
else:
raise NotImplementedError("unknown loss type '{loss_type}'")
return loss
def p_losses(self, x_start, t, noise=None):
noise = default(noise, lambda: torch.randn_like(x_start))
x_noisy = self.q_sample(x_start=x_start, t=t, noise=noise)
model_out = self.model(x_noisy, t)
loss_dict = {}
if self.parameterization == "eps":
target = noise
elif self.parameterization == "x0":
target = x_start
elif self.parameterization == "v":
target = self.get_v(x_start, noise, t)
else:
raise NotImplementedError(f"Parameterization {self.parameterization} not yet supported")
loss = self.get_loss(model_out, target, mean=False).mean(dim=[1, 2, 3])
log_prefix = 'train' if self.training else 'val'
loss_dict.update({f'{log_prefix}/loss_simple': loss.mean()})
loss_simple = loss.mean() * self.l_simple_weight
loss_vlb = (self.lvlb_weights[t] * loss).mean()
loss_dict.update({f'{log_prefix}/loss_vlb': loss_vlb})
loss = loss_simple + self.original_elbo_weight * loss_vlb
loss_dict.update({f'{log_prefix}/loss': loss})
return loss, loss_dict
def forward(self, x, *args, **kwargs):
# b, c, h, w, device, img_size, = *x.shape, x.device, self.image_size
# assert h == img_size and w == img_size, f'height and width of image must be {img_size}'
t = torch.randint(0, self.num_timesteps, (x.shape[0],), device=self.device).long()
return self.p_losses(x, t, *args, **kwargs)
def get_input(self, batch, k):
x = batch[k]
if len(x.shape) == 3:
x = x[..., None]
x = rearrange(x, 'b h w c -> b c h w')
x = x.to(memory_format=torch.contiguous_format).float()
return x
def shared_step(self, batch):
x = self.get_input(batch, self.first_stage_key)
loss, loss_dict = self(x)
return loss, loss_dict
def training_step(self, batch, batch_idx):
for k in self.ucg_training:
p = self.ucg_training[k]["p"]
val = self.ucg_training[k]["val"]
if val is None:
val = ""
for i in range(len(batch[k])):
if self.ucg_prng.choice(2, p=[1 - p, p]):
batch[k][i] = val
loss, loss_dict = self.shared_step(batch)
self.log_dict(loss_dict, prog_bar=True,
logger=True, on_step=True, on_epoch=True)
self.log("global_step", self.global_step,
prog_bar=True, logger=True, on_step=True, on_epoch=False)
if self.use_scheduler:
lr = self.optimizers().param_groups[0]['lr']
self.log('lr_abs', lr, prog_bar=True, logger=True, on_step=True, on_epoch=False)
return loss
@torch.no_grad()
def validation_step(self, batch, batch_idx):
_, loss_dict_no_ema = self.shared_step(batch)
with self.ema_scope():
_, loss_dict_ema = self.shared_step(batch)
loss_dict_ema = {key + '_ema': loss_dict_ema[key] for key in loss_dict_ema}
self.log_dict(loss_dict_no_ema, prog_bar=False, logger=True, on_step=False, on_epoch=True)
self.log_dict(loss_dict_ema, prog_bar=False, logger=True, on_step=False, on_epoch=True)
def on_train_batch_end(self, *args, **kwargs):
if self.use_ema:
self.model_ema(self.model)
def _get_rows_from_list(self, samples):
n_imgs_per_row = len(samples)
denoise_grid = rearrange(samples, 'n b c h w -> b n c h w')
denoise_grid = rearrange(denoise_grid, 'b n c h w -> (b n) c h w')
denoise_grid = make_grid(denoise_grid, nrow=n_imgs_per_row)
return denoise_grid
@torch.no_grad()
def log_images(self, batch, N=8, n_row=2, sample=True, return_keys=None, **kwargs):
log = dict()
x = self.get_input(batch, self.first_stage_key)
N = min(x.shape[0], N)
n_row = min(x.shape[0], n_row)
x = x.to(self.device)[:N]
log["inputs"] = x
# get diffusion row
diffusion_row = list()
x_start = x[:n_row]
for t in range(self.num_timesteps):
if t % self.log_every_t == 0 or t == self.num_timesteps - 1:
t = repeat(torch.tensor([t]), '1 -> b', b=n_row)
t = t.to(self.device).long()
noise = torch.randn_like(x_start)
x_noisy = self.q_sample(x_start=x_start, t=t, noise=noise)
diffusion_row.append(x_noisy)
log["diffusion_row"] = self._get_rows_from_list(diffusion_row)
if sample:
# get denoise row
with self.ema_scope("Plotting"):
samples, denoise_row = self.sample(batch_size=N, return_intermediates=True)
log["samples"] = samples
log["denoise_row"] = self._get_rows_from_list(denoise_row)
if return_keys:
if np.intersect1d(list(log.keys()), return_keys).shape[0] == 0:
return log
else:
return {key: log[key] for key in return_keys}
return log
def configure_optimizers(self):
lr = self.learning_rate
params = list(self.model.parameters())
if self.learn_logvar:
params = params + [self.logvar]
opt = torch.optim.AdamW(params, lr=lr)
return opt
class LatentDiffusion(DDPM):
"""main class"""
def __init__(self,
first_stage_config={},
cond_stage_config={},
num_timesteps_cond=None,
cond_stage_key="image",
cond_stage_trainable=False,
concat_mode=True,
cond_stage_forward=None,
conditioning_key=None,
scale_factor=1.0,
scale_by_std=False,
force_null_conditioning=False,
*args, **kwargs):
self.force_null_conditioning = force_null_conditioning
self.num_timesteps_cond = default(num_timesteps_cond, 1)
self.scale_by_std = scale_by_std
assert self.num_timesteps_cond <= kwargs['timesteps']
# for backwards compatibility after implementation of DiffusionWrapper
if conditioning_key is None:
conditioning_key = 'concat' if concat_mode else 'crossattn'
if cond_stage_config == '__is_unconditional__' and not self.force_null_conditioning:
conditioning_key = None
ckpt_path = kwargs.pop("ckpt_path", None)
reset_ema = kwargs.pop("reset_ema", False)
reset_num_ema_updates = kwargs.pop("reset_num_ema_updates", False)
ignore_keys = kwargs.pop("ignore_keys", [])
super().__init__(conditioning_key=conditioning_key, *args, **kwargs)
self.concat_mode = concat_mode
self.cond_stage_trainable = cond_stage_trainable
self.cond_stage_key = cond_stage_key
try:
self.num_downs = len(first_stage_config.params.ddconfig.ch_mult) - 1
except:
self.num_downs = 0
if not scale_by_std:
self.scale_factor = scale_factor
else:
self.register_buffer('scale_factor', torch.tensor(scale_factor))
# self.instantiate_first_stage(first_stage_config)
# self.instantiate_cond_stage(cond_stage_config)
self.cond_stage_forward = cond_stage_forward
self.clip_denoised = False
self.bbox_tokenizer = None
self.restarted_from_ckpt = False
if ckpt_path is not None:
self.init_from_ckpt(ckpt_path, ignore_keys)
self.restarted_from_ckpt = True
if reset_ema:
assert self.use_ema
print(
f"Resetting ema to pure model weights. This is useful when restoring from an ema-only checkpoint.")
self.model_ema = LitEma(self.model)
if reset_num_ema_updates:
print(" +++++++++++ WARNING: RESETTING NUM_EMA UPDATES TO ZERO +++++++++++ ")
assert self.use_ema
self.model_ema.reset_num_updates()
def make_cond_schedule(self, ):
self.cond_ids = torch.full(size=(self.num_timesteps,), fill_value=self.num_timesteps - 1, dtype=torch.long)
ids = torch.round(torch.linspace(0, self.num_timesteps - 1, self.num_timesteps_cond)).long()
self.cond_ids[:self.num_timesteps_cond] = ids
# @rank_zero_only
@torch.no_grad()
def on_train_batch_start(self, batch, batch_idx, dataloader_idx):
# only for very first batch
if self.scale_by_std and self.current_epoch == 0 and self.global_step == 0 and batch_idx == 0 and not self.restarted_from_ckpt:
assert self.scale_factor == 1., 'rather not use custom rescaling and std-rescaling simultaneously'
# set rescale weight to 1./std of encodings
print("### USING STD-RESCALING ###")
x = super().get_input(batch, self.first_stage_key)
x = x.to(self.device)
encoder_posterior = self.encode_first_stage(x)
z = self.get_first_stage_encoding(encoder_posterior).detach()
del self.scale_factor
self.register_buffer('scale_factor', 1. / z.flatten().std())
print(f"setting self.scale_factor to {self.scale_factor}")
print("### USING STD-RESCALING ###")
def register_schedule(self,
given_betas=None, beta_schedule="linear", timesteps=1000,
linear_start=1e-4, linear_end=2e-2, cosine_s=8e-3):
super().register_schedule(given_betas, beta_schedule, timesteps, linear_start, linear_end, cosine_s)
self.shorten_cond_schedule = self.num_timesteps_cond > 1
if self.shorten_cond_schedule:
self.make_cond_schedule()
def instantiate_first_stage(self, config):
model = instantiate_from_config(config)
self.first_stage_model = model.eval()
self.first_stage_model.train = disabled_train
for param in self.first_stage_model.parameters():
param.requires_grad = False
def instantiate_cond_stage(self, config):
if not self.cond_stage_trainable:
if config == "__is_first_stage__":
print("Using first stage also as cond stage.")
self.cond_stage_model = self.first_stage_model
elif config == "__is_unconditional__":
print(f"Training {self.__class__.__name__} as an unconditional model.")
self.cond_stage_model = None
# self.be_unconditional = True
else:
model = instantiate_from_config(config)
self.cond_stage_model = model.eval()
self.cond_stage_model.train = disabled_train
for param in self.cond_stage_model.parameters():
param.requires_grad = False
else:
assert config != '__is_first_stage__'
assert config != '__is_unconditional__'
model = instantiate_from_config(config)
self.cond_stage_model = model
def _get_denoise_row_from_list(self, samples, desc='', force_no_decoder_quantization=False):
denoise_row = []
for zd in tqdm(samples, desc=desc):
denoise_row.append(self.decode_first_stage(zd.to(self.device),
force_not_quantize=force_no_decoder_quantization))
n_imgs_per_row = len(denoise_row)
denoise_row = torch.stack(denoise_row) # n_log_step, n_row, C, H, W
denoise_grid = rearrange(denoise_row, 'n b c h w -> b n c h w')
denoise_grid = rearrange(denoise_grid, 'b n c h w -> (b n) c h w')
denoise_grid = make_grid(denoise_grid, nrow=n_imgs_per_row)
return denoise_grid
def get_first_stage_encoding(self, encoder_posterior):
if isinstance(encoder_posterior, DiagonalGaussianDistribution):
z = encoder_posterior.sample()
elif isinstance(encoder_posterior, torch.Tensor):
z = encoder_posterior
else:
raise NotImplementedError(f"encoder_posterior of type '{type(encoder_posterior)}' not yet implemented")
return self.scale_factor * z
def get_learned_conditioning(self, c):
if self.cond_stage_forward is None:
if hasattr(self.cond_stage_model, 'encode') and callable(self.cond_stage_model.encode):
c = self.cond_stage_model.encode(c)
if isinstance(c, DiagonalGaussianDistribution):
c = c.mode()
else:
c = self.cond_stage_model(c)
else:
assert hasattr(self.cond_stage_model, self.cond_stage_forward)
c = getattr(self.cond_stage_model, self.cond_stage_forward)(c)
return c
def meshgrid(self, h, w):
y = torch.arange(0, h).view(h, 1, 1).repeat(1, w, 1)
x = torch.arange(0, w).view(1, w, 1).repeat(h, 1, 1)
arr = torch.cat([y, x], dim=-1)
return arr
def delta_border(self, h, w):
"""
:param h: height
:param w: width
:return: normalized distance to image border,
wtith min distance = 0 at border and max dist = 0.5 at image center
"""
lower_right_corner = torch.tensor([h - 1, w - 1]).view(1, 1, 2)
arr = self.meshgrid(h, w) / lower_right_corner
dist_left_up = torch.min(arr, dim=-1, keepdims=True)[0]
dist_right_down = torch.min(1 - arr, dim=-1, keepdims=True)[0]
edge_dist = torch.min(torch.cat([dist_left_up, dist_right_down], dim=-1), dim=-1)[0]
return edge_dist
def get_weighting(self, h, w, Ly, Lx, device):
weighting = self.delta_border(h, w)
weighting = torch.clip(weighting, self.split_input_params["clip_min_weight"],
self.split_input_params["clip_max_weight"], )
weighting = weighting.view(1, h * w, 1).repeat(1, 1, Ly * Lx).to(device)
if self.split_input_params["tie_braker"]:
L_weighting = self.delta_border(Ly, Lx)
L_weighting = torch.clip(L_weighting,
self.split_input_params["clip_min_tie_weight"],
self.split_input_params["clip_max_tie_weight"])
L_weighting = L_weighting.view(1, 1, Ly * Lx).to(device)
weighting = weighting * L_weighting
return weighting
def get_fold_unfold(self, x, kernel_size, stride, uf=1, df=1): # todo load once not every time, shorten code
"""
:param x: img of size (bs, c, h, w)
:return: n img crops of size (n, bs, c, kernel_size[0], kernel_size[1])
"""
bs, nc, h, w = x.shape
# number of crops in image
Ly = (h - kernel_size[0]) // stride[0] + 1
Lx = (w - kernel_size[1]) // stride[1] + 1
if uf == 1 and df == 1:
fold_params = dict(kernel_size=kernel_size, dilation=1, padding=0, stride=stride)
unfold = torch.nn.Unfold(**fold_params)
fold = torch.nn.Fold(output_size=x.shape[2:], **fold_params)
weighting = self.get_weighting(kernel_size[0], kernel_size[1], Ly, Lx, x.device).to(x.dtype)
normalization = fold(weighting).view(1, 1, h, w) # normalizes the overlap
weighting = weighting.view((1, 1, kernel_size[0], kernel_size[1], Ly * Lx))
elif uf > 1 and df == 1:
fold_params = dict(kernel_size=kernel_size, dilation=1, padding=0, stride=stride)
unfold = torch.nn.Unfold(**fold_params)
fold_params2 = dict(kernel_size=(kernel_size[0] * uf, kernel_size[0] * uf),
dilation=1, padding=0,
stride=(stride[0] * uf, stride[1] * uf))
fold = torch.nn.Fold(output_size=(x.shape[2] * uf, x.shape[3] * uf), **fold_params2)
weighting = self.get_weighting(kernel_size[0] * uf, kernel_size[1] * uf, Ly, Lx, x.device).to(x.dtype)
normalization = fold(weighting).view(1, 1, h * uf, w * uf) # normalizes the overlap
weighting = weighting.view((1, 1, kernel_size[0] * uf, kernel_size[1] * uf, Ly * Lx))
elif df > 1 and uf == 1:
fold_params = dict(kernel_size=kernel_size, dilation=1, padding=0, stride=stride)
unfold = torch.nn.Unfold(**fold_params)
fold_params2 = dict(kernel_size=(kernel_size[0] // df, kernel_size[0] // df),
dilation=1, padding=0,
stride=(stride[0] // df, stride[1] // df))
fold = torch.nn.Fold(output_size=(x.shape[2] // df, x.shape[3] // df), **fold_params2)
weighting = self.get_weighting(kernel_size[0] // df, kernel_size[1] // df, Ly, Lx, x.device).to(x.dtype)
normalization = fold(weighting).view(1, 1, h // df, w // df) # normalizes the overlap
weighting = weighting.view((1, 1, kernel_size[0] // df, kernel_size[1] // df, Ly * Lx))
else:
raise NotImplementedError
return fold, unfold, normalization, weighting
@torch.no_grad()
def get_input(self, batch, k, return_first_stage_outputs=False, force_c_encode=False,
cond_key=None, return_original_cond=False, bs=None, return_x=False):
x = super().get_input(batch, k)
if bs is not None:
x = x[:bs]
x = x.to(self.device)
encoder_posterior = self.encode_first_stage(x)
z = self.get_first_stage_encoding(encoder_posterior).detach()
if self.model.conditioning_key is not None and not self.force_null_conditioning:
if cond_key is None:
cond_key = self.cond_stage_key
if cond_key != self.first_stage_key:
if cond_key in ['caption', 'coordinates_bbox', "txt"]:
xc = batch[cond_key]
elif cond_key in ['class_label', 'cls']:
xc = batch
else:
xc = super().get_input(batch, cond_key).to(self.device)
else:
xc = x
if not self.cond_stage_trainable or force_c_encode:
if isinstance(xc, dict) or isinstance(xc, list):
c = self.get_learned_conditioning(xc)
else:
c = self.get_learned_conditioning(xc.to(self.device))
else:
c = xc
if bs is not None:
c = c[:bs]
if self.use_positional_encodings:
pos_x, pos_y = self.compute_latent_shifts(batch)
ckey = __conditioning_keys__[self.model.conditioning_key]
c = {ckey: c, 'pos_x': pos_x, 'pos_y': pos_y}
else:
c = None
xc = None
if self.use_positional_encodings:
pos_x, pos_y = self.compute_latent_shifts(batch)
c = {'pos_x': pos_x, 'pos_y': pos_y}
out = [z, c]
if return_first_stage_outputs:
xrec = self.decode_first_stage(z)
out.extend([x, xrec])
if return_x:
out.extend([x])
if return_original_cond:
out.append(xc)
return out
@torch.no_grad()
def decode_first_stage(self, z, predict_cids=False, force_not_quantize=False):
if predict_cids:
if z.dim() == 4:
z = torch.argmax(z.exp(), dim=1).long()
z = self.first_stage_model.quantize.get_codebook_entry(z, shape=None)
z = rearrange(z, 'b h w c -> b c h w').contiguous()
z = 1. / self.scale_factor * z
return self.first_stage_model.decode(z)
@torch.no_grad()
def encode_first_stage(self, x):
return self.first_stage_model.encode(x)
def shared_step(self, batch, **kwargs):
x, c = self.get_input(batch, self.first_stage_key)
loss = self(x, c)
return loss
def forward(self, x, c, *args, **kwargs):
t = torch.randint(0, self.num_timesteps, (x.shape[0],), device=self.device).long()
if self.model.conditioning_key is not None:
assert c is not None
if self.cond_stage_trainable:
c = self.get_learned_conditioning(c)
if self.shorten_cond_schedule: # TODO: drop this option
tc = self.cond_ids[t].to(self.device)
c = self.q_sample(x_start=c, t=tc, noise=torch.randn_like(c.float()))
return self.p_losses(x, c, t, *args, **kwargs)
def apply_model(self, x_noisy, t, cond, return_ids=False):
if isinstance(cond, dict):
# hybrid case, cond is expected to be a dict
pass
else:
if not isinstance(cond, list):
cond = [cond]
key = 'c_concat' if self.model.conditioning_key == 'concat' else 'c_crossattn'
cond = {key: cond}
x_recon = self.model(x_noisy, t, **cond)
if isinstance(x_recon, tuple) and not return_ids:
return x_recon[0]
else:
return x_recon
def _predict_eps_from_xstart(self, x_t, t, pred_xstart):
return (extract_into_tensor(self.sqrt_recip_alphas_cumprod, t, x_t.shape) * x_t - pred_xstart) / \
extract_into_tensor(self.sqrt_recipm1_alphas_cumprod, t, x_t.shape)
def _prior_bpd(self, x_start):
"""
Get the prior KL term for the variational lower-bound, measured in
bits-per-dim.
This term can't be optimized, as it only depends on the encoder.
:param x_start: the [N x C x ...] tensor of inputs.
:return: a batch of [N] KL values (in bits), one per batch element.
"""
batch_size = x_start.shape[0]
t = torch.tensor([self.num_timesteps - 1] * batch_size, device=x_start.device)
qt_mean, _, qt_log_variance = self.q_mean_variance(x_start, t)
kl_prior = normal_kl(mean1=qt_mean, logvar1=qt_log_variance, mean2=0.0, logvar2=0.0)
return mean_flat(kl_prior) / np.log(2.0)
def p_losses(self, x_start, cond, t, noise=None):
noise = default(noise, lambda: torch.randn_like(x_start))
x_noisy = self.q_sample(x_start=x_start, t=t, noise=noise)
model_output = self.apply_model(x_noisy, t, cond)
loss_dict = {}
prefix = 'train' if self.training else 'val'
if self.parameterization == "x0":
target = x_start
elif self.parameterization == "eps":
target = noise
elif self.parameterization == "v":
target = self.get_v(x_start, noise, t)
else:
raise NotImplementedError()
loss_simple = self.get_loss(model_output, target, mean=False).mean([1, 2, 3])
loss_dict.update({f'{prefix}/loss_simple': loss_simple.mean()})
logvar_t = self.logvar[t].to(self.device)
loss = loss_simple / torch.exp(logvar_t) + logvar_t
# loss = loss_simple / torch.exp(self.logvar) + self.logvar
if self.learn_logvar:
loss_dict.update({f'{prefix}/loss_gamma': loss.mean()})
loss_dict.update({'logvar': self.logvar.data.mean()})
loss = self.l_simple_weight * loss.mean()
loss_vlb = self.get_loss(model_output, target, mean=False).mean(dim=(1, 2, 3))
loss_vlb = (self.lvlb_weights[t] * loss_vlb).mean()
loss_dict.update({f'{prefix}/loss_vlb': loss_vlb})
loss += (self.original_elbo_weight * loss_vlb)
loss_dict.update({f'{prefix}/loss': loss})
return loss, loss_dict
def p_mean_variance(self, x, c, t, clip_denoised: bool, return_codebook_ids=False, quantize_denoised=False,
return_x0=False, score_corrector=None, corrector_kwargs=None):
t_in = t
model_out = self.apply_model(x, t_in, c, return_ids=return_codebook_ids)
if score_corrector is not None:
assert self.parameterization == "eps"
model_out = score_corrector.modify_score(self, model_out, x, t, c, **corrector_kwargs)
if return_codebook_ids:
model_out, logits = model_out
if self.parameterization == "eps":
x_recon = self.predict_start_from_noise(x, t=t, noise=model_out)
elif self.parameterization == "x0":
x_recon = model_out
else:
raise NotImplementedError()
if clip_denoised:
x_recon.clamp_(-1., 1.)
if quantize_denoised:
x_recon, _, [_, _, indices] = self.first_stage_model.quantize(x_recon)
model_mean, posterior_variance, posterior_log_variance = self.q_posterior(x_start=x_recon, x_t=x, t=t)
if return_codebook_ids:
return model_mean, posterior_variance, posterior_log_variance, logits
elif return_x0:
return model_mean, posterior_variance, posterior_log_variance, x_recon
else:
return model_mean, posterior_variance, posterior_log_variance
@torch.no_grad()
def p_sample(self, x, c, t, clip_denoised=False, repeat_noise=False,
return_codebook_ids=False, quantize_denoised=False, return_x0=False,
temperature=1., noise_dropout=0., score_corrector=None, corrector_kwargs=None):
b, *_, device = *x.shape, x.device
outputs = self.p_mean_variance(x=x, c=c, t=t, clip_denoised=clip_denoised,
return_codebook_ids=return_codebook_ids,
quantize_denoised=quantize_denoised,
return_x0=return_x0,
score_corrector=score_corrector, corrector_kwargs=corrector_kwargs)
if return_codebook_ids:
raise DeprecationWarning("Support dropped.")
model_mean, _, model_log_variance, logits = outputs
elif return_x0:
model_mean, _, model_log_variance, x0 = outputs
else:
model_mean, _, model_log_variance = outputs
noise = noise_like(x.shape, device, repeat_noise) * temperature
if noise_dropout > 0.:
noise = torch.nn.functional.dropout(noise, p=noise_dropout)
# no noise when t == 0
nonzero_mask = (1 - (t == 0).float()).reshape(b, *((1,) * (len(x.shape) - 1)))
if return_codebook_ids:
return model_mean + nonzero_mask * (0.5 * model_log_variance).exp() * noise, logits.argmax(dim=1)
if return_x0:
return model_mean + nonzero_mask * (0.5 * model_log_variance).exp() * noise, x0
else:
return model_mean + nonzero_mask * (0.5 * model_log_variance).exp() * noise
@torch.no_grad()
def progressive_denoising(self, cond, shape, verbose=True, callback=None, quantize_denoised=False,
img_callback=None, mask=None, x0=None, temperature=1., noise_dropout=0.,
score_corrector=None, corrector_kwargs=None, batch_size=None, x_T=None, start_T=None,
log_every_t=None):
if not log_every_t:
log_every_t = self.log_every_t
timesteps = self.num_timesteps
if batch_size is not None:
b = batch_size if batch_size is not None else shape[0]
shape = [batch_size] + list(shape)
else:
b = batch_size = shape[0]
if x_T is None:
img = torch.randn(shape, device=self.device)
else:
img = x_T
intermediates = []
if cond is not None:
if isinstance(cond, dict):
cond = {key: cond[key][:batch_size] if not isinstance(cond[key], list) else
list(map(lambda x: x[:batch_size], cond[key])) for key in cond}
else:
cond = [c[:batch_size] for c in cond] if isinstance(cond, list) else cond[:batch_size]
if start_T is not None:
timesteps = min(timesteps, start_T)
iterator = tqdm(reversed(range(0, timesteps)), desc='Progressive Generation',
total=timesteps) if verbose else reversed(
range(0, timesteps))
if type(temperature) == float:
temperature = [temperature] * timesteps
for i in iterator:
ts = torch.full((b,), i, device=self.device, dtype=torch.long)
if self.shorten_cond_schedule:
assert self.model.conditioning_key != 'hybrid'
tc = self.cond_ids[ts].to(cond.device)
cond = self.q_sample(x_start=cond, t=tc, noise=torch.randn_like(cond))
img, x0_partial = self.p_sample(img, cond, ts,
clip_denoised=self.clip_denoised,
quantize_denoised=quantize_denoised, return_x0=True,
temperature=temperature[i], noise_dropout=noise_dropout,
score_corrector=score_corrector, corrector_kwargs=corrector_kwargs)
if mask is not None:
assert x0 is not None
img_orig = self.q_sample(x0, ts)
img = img_orig * mask + (1. - mask) * img
if i % log_every_t == 0 or i == timesteps - 1:
intermediates.append(x0_partial)
if callback: callback(i)
if img_callback: img_callback(img, i)
return img, intermediates
@torch.no_grad()
def p_sample_loop(self, cond, shape, return_intermediates=False,
x_T=None, verbose=True, callback=None, timesteps=None, quantize_denoised=False,
mask=None, x0=None, img_callback=None, start_T=None,
log_every_t=None):
if not log_every_t:
log_every_t = self.log_every_t
device = self.betas.device
b = shape[0]
if x_T is None:
img = torch.randn(shape, device=device)
else:
img = x_T
intermediates = [img]
if timesteps is None:
timesteps = self.num_timesteps
if start_T is not None:
timesteps = min(timesteps, start_T)
iterator = tqdm(reversed(range(0, timesteps)), desc='Sampling t', total=timesteps) if verbose else reversed(
range(0, timesteps))
if mask is not None:
assert x0 is not None
assert x0.shape[2:3] == mask.shape[2:3] # spatial size has to match
for i in iterator:
ts = torch.full((b,), i, device=device, dtype=torch.long)
if self.shorten_cond_schedule:
assert self.model.conditioning_key != 'hybrid'
tc = self.cond_ids[ts].to(cond.device)
cond = self.q_sample(x_start=cond, t=tc, noise=torch.randn_like(cond))
img = self.p_sample(img, cond, ts,
clip_denoised=self.clip_denoised,
quantize_denoised=quantize_denoised)
if mask is not None:
img_orig = self.q_sample(x0, ts)
img = img_orig * mask + (1. - mask) * img
if i % log_every_t == 0 or i == timesteps - 1:
intermediates.append(img)
if callback: callback(i)
if img_callback: img_callback(img, i)
if return_intermediates:
return img, intermediates
return img
@torch.no_grad()
def sample(self, cond, batch_size=16, return_intermediates=False, x_T=None,
verbose=True, timesteps=None, quantize_denoised=False,
mask=None, x0=None, shape=None, **kwargs):
if shape is None:
shape = (batch_size, self.channels, self.image_size, self.image_size)
if cond is not None:
if isinstance(cond, dict):
cond = {key: cond[key][:batch_size] if not isinstance(cond[key], list) else
list(map(lambda x: x[:batch_size], cond[key])) for key in cond}
else:
cond = [c[:batch_size] for c in cond] if isinstance(cond, list) else cond[:batch_size]
return self.p_sample_loop(cond,
shape,
return_intermediates=return_intermediates, x_T=x_T,
verbose=verbose, timesteps=timesteps, quantize_denoised=quantize_denoised,
mask=mask, x0=x0)
@torch.no_grad()
def sample_log(self, cond, batch_size, ddim, ddim_steps, **kwargs):
if ddim:
ddim_sampler = DDIMSampler(self)
shape = (self.channels, self.image_size, self.image_size)
samples, intermediates = ddim_sampler.sample(ddim_steps, batch_size,
shape, cond, verbose=False, **kwargs)
else:
samples, intermediates = self.sample(cond=cond, batch_size=batch_size,
return_intermediates=True, **kwargs)
return samples, intermediates
@torch.no_grad()
def get_unconditional_conditioning(self, batch_size, null_label=None):
if null_label is not None:
xc = null_label
# if isinstance(xc, ListConfig):
# xc = list(xc)
if isinstance(xc, dict) or isinstance(xc, list):
c = self.get_learned_conditioning(xc)
else:
if hasattr(xc, "to"):
xc = xc.to(self.device)
c = self.get_learned_conditioning(xc)
else:
if self.cond_stage_key in ["class_label", "cls"]:
xc = self.cond_stage_model.get_unconditional_conditioning(batch_size, device=self.device)
return self.get_learned_conditioning(xc)
else:
raise NotImplementedError("todo")
if isinstance(c, list): # in case the encoder gives us a list
for i in range(len(c)):
c[i] = repeat(c[i], '1 ... -> b ...', b=batch_size).to(self.device)
else:
c = repeat(c, '1 ... -> b ...', b=batch_size).to(self.device)
return c
@torch.no_grad()
def log_images(self, batch, N=8, n_row=4, sample=True, ddim_steps=50, ddim_eta=0., return_keys=None,
quantize_denoised=True, inpaint=True, plot_denoise_rows=False, plot_progressive_rows=True,
plot_diffusion_rows=True, unconditional_guidance_scale=1., unconditional_guidance_label=None,
use_ema_scope=True,
**kwargs):
ema_scope = self.ema_scope if use_ema_scope else nullcontext
use_ddim = ddim_steps is not None
log = dict()
z, c, x, xrec, xc = self.get_input(batch, self.first_stage_key,
return_first_stage_outputs=True,
force_c_encode=True,
return_original_cond=True,
bs=N)
N = min(x.shape[0], N)
n_row = min(x.shape[0], n_row)
log["inputs"] = x
log["reconstruction"] = xrec
if self.model.conditioning_key is not None:
if hasattr(self.cond_stage_model, "decode"):
xc = self.cond_stage_model.decode(c)
log["conditioning"] = xc
elif self.cond_stage_key in ["caption", "txt"]:
xc = log_txt_as_img((x.shape[2], x.shape[3]), batch[self.cond_stage_key], size=x.shape[2] // 25)
log["conditioning"] = xc
elif self.cond_stage_key in ['class_label', "cls"]:
try:
xc = log_txt_as_img((x.shape[2], x.shape[3]), batch["human_label"], size=x.shape[2] // 25)
log['conditioning'] = xc
except KeyError:
# probably no "human_label" in batch
pass
elif isimage(xc):
log["conditioning"] = xc
if ismap(xc):
log["original_conditioning"] = self.to_rgb(xc)
if plot_diffusion_rows:
# get diffusion row
diffusion_row = list()
z_start = z[:n_row]
for t in range(self.num_timesteps):
if t % self.log_every_t == 0 or t == self.num_timesteps - 1:
t = repeat(torch.tensor([t]), '1 -> b', b=n_row)
t = t.to(self.device).long()
noise = torch.randn_like(z_start)
z_noisy = self.q_sample(x_start=z_start, t=t, noise=noise)
diffusion_row.append(self.decode_first_stage(z_noisy))
diffusion_row = torch.stack(diffusion_row) # n_log_step, n_row, C, H, W
diffusion_grid = rearrange(diffusion_row, 'n b c h w -> b n c h w')
diffusion_grid = rearrange(diffusion_grid, 'b n c h w -> (b n) c h w')
diffusion_grid = make_grid(diffusion_grid, nrow=diffusion_row.shape[0])
log["diffusion_row"] = diffusion_grid
if sample:
# get denoise row
with ema_scope("Sampling"):
samples, z_denoise_row = self.sample_log(cond=c, batch_size=N, ddim=use_ddim,
ddim_steps=ddim_steps, eta=ddim_eta)
# samples, z_denoise_row = self.sample(cond=c, batch_size=N, return_intermediates=True)
x_samples = self.decode_first_stage(samples)
log["samples"] = x_samples
if plot_denoise_rows:
denoise_grid = self._get_denoise_row_from_list(z_denoise_row)
log["denoise_row"] = denoise_grid
if quantize_denoised and not isinstance(self.first_stage_model, AutoencoderKL) and not isinstance(
self.first_stage_model, IdentityFirstStage):
# also display when quantizing x0 while sampling
with ema_scope("Plotting Quantized Denoised"):
samples, z_denoise_row = self.sample_log(cond=c, batch_size=N, ddim=use_ddim,
ddim_steps=ddim_steps, eta=ddim_eta,
quantize_denoised=True)
# samples, z_denoise_row = self.sample(cond=c, batch_size=N, return_intermediates=True,
# quantize_denoised=True)
x_samples = self.decode_first_stage(samples.to(self.device))
log["samples_x0_quantized"] = x_samples
if unconditional_guidance_scale > 1.0:
uc = self.get_unconditional_conditioning(N, unconditional_guidance_label)
if self.model.conditioning_key == "crossattn-adm":
uc = {"c_crossattn": [uc], "c_adm": c["c_adm"]}
with ema_scope("Sampling with classifier-free guidance"):
samples_cfg, _ = self.sample_log(cond=c, batch_size=N, ddim=use_ddim,
ddim_steps=ddim_steps, eta=ddim_eta,
unconditional_guidance_scale=unconditional_guidance_scale,
unconditional_conditioning=uc,
)
x_samples_cfg = self.decode_first_stage(samples_cfg)
log[f"samples_cfg_scale_{unconditional_guidance_scale:.2f}"] = x_samples_cfg
if inpaint:
# make a simple center square
b, h, w = z.shape[0], z.shape[2], z.shape[3]
mask = torch.ones(N, h, w).to(self.device)
# zeros will be filled in
mask[:, h // 4:3 * h // 4, w // 4:3 * w // 4] = 0.
mask = mask[:, None, ...]
with ema_scope("Plotting Inpaint"):
samples, _ = self.sample_log(cond=c, batch_size=N, ddim=use_ddim, eta=ddim_eta,
ddim_steps=ddim_steps, x0=z[:N], mask=mask)
x_samples = self.decode_first_stage(samples.to(self.device))
log["samples_inpainting"] = x_samples
log["mask"] = mask
# outpaint
mask = 1. - mask
with ema_scope("Plotting Outpaint"):
samples, _ = self.sample_log(cond=c, batch_size=N, ddim=use_ddim, eta=ddim_eta,
ddim_steps=ddim_steps, x0=z[:N], mask=mask)
x_samples = self.decode_first_stage(samples.to(self.device))
log["samples_outpainting"] = x_samples
if plot_progressive_rows:
with ema_scope("Plotting Progressives"):
img, progressives = self.progressive_denoising(c,
shape=(self.channels, self.image_size, self.image_size),
batch_size=N)
prog_row = self._get_denoise_row_from_list(progressives, desc="Progressive Generation")
log["progressive_row"] = prog_row
if return_keys:
if np.intersect1d(list(log.keys()), return_keys).shape[0] == 0:
return log
else:
return {key: log[key] for key in return_keys}
return log
def configure_optimizers(self):
lr = self.learning_rate
params = list(self.model.parameters())
if self.cond_stage_trainable:
print(f"{self.__class__.__name__}: Also optimizing conditioner params!")
params = params + list(self.cond_stage_model.parameters())
if self.learn_logvar:
print('Diffusion model optimizing logvar')
params.append(self.logvar)
opt = torch.optim.AdamW(params, lr=lr)
if self.use_scheduler:
assert 'target' in self.scheduler_config
scheduler = instantiate_from_config(self.scheduler_config)
print("Setting up LambdaLR scheduler...")
scheduler = [
{
'scheduler': LambdaLR(opt, lr_lambda=scheduler.schedule),
'interval': 'step',
'frequency': 1
}]
return [opt], scheduler
return opt
@torch.no_grad()
def to_rgb(self, x):
x = x.float()
if not hasattr(self, "colorize"):
self.colorize = torch.randn(3, x.shape[1], 1, 1).to(x)
x = nn.functional.conv2d(x, weight=self.colorize)
x = 2. * (x - x.min()) / (x.max() - x.min()) - 1.
return x
# class DiffusionWrapper(pl.LightningModule):
class DiffusionWrapper(torch.nn.Module):
def __init__(self, diff_model_config, conditioning_key):
super().__init__()
self.sequential_cross_attn = diff_model_config.pop("sequential_crossattn", False)
self.diffusion_model = instantiate_from_config(diff_model_config)
self.conditioning_key = conditioning_key
assert self.conditioning_key in [None, 'concat', 'crossattn', 'hybrid', 'adm', 'hybrid-adm', 'crossattn-adm']
def forward(self, x, t, c_concat: list = None, c_crossattn: list = None, c_adm=None, control=None, transformer_options={}):
if self.conditioning_key is None:
out = self.diffusion_model(x, t, control=control, transformer_options=transformer_options)
elif self.conditioning_key == 'concat':
xc = torch.cat([x] + c_concat, dim=1)
out = self.diffusion_model(xc, t, control=control, transformer_options=transformer_options)
elif self.conditioning_key == 'crossattn':
if not self.sequential_cross_attn:
cc = torch.cat(c_crossattn, 1)
else:
cc = c_crossattn
if hasattr(self, "scripted_diffusion_model"):
# TorchScript changes names of the arguments
# with argument cc defined as context=cc scripted model will produce
# an error: RuntimeError: forward() is missing value for argument 'argument_3'.
out = self.scripted_diffusion_model(x, t, cc, control=control, transformer_options=transformer_options)
else:
out = self.diffusion_model(x, t, context=cc, control=control, transformer_options=transformer_options)
elif self.conditioning_key == 'hybrid':
xc = torch.cat([x] + c_concat, dim=1)
cc = torch.cat(c_crossattn, 1)
out = self.diffusion_model(xc, t, context=cc, control=control, transformer_options=transformer_options)
elif self.conditioning_key == 'hybrid-adm':
assert c_adm is not None
xc = torch.cat([x] + c_concat, dim=1)
cc = torch.cat(c_crossattn, 1)
out = self.diffusion_model(xc, t, context=cc, y=c_adm, control=control, transformer_options=transformer_options)
elif self.conditioning_key == 'crossattn-adm':
assert c_adm is not None
cc = torch.cat(c_crossattn, 1)
out = self.diffusion_model(x, t, context=cc, y=c_adm, control=control, transformer_options=transformer_options)
elif self.conditioning_key == 'adm':
cc = c_crossattn[0]
out = self.diffusion_model(x, t, y=cc, control=control, transformer_options=transformer_options)
else:
raise NotImplementedError()
return out
class LatentUpscaleDiffusion(LatentDiffusion):
def __init__(self, *args, low_scale_config, low_scale_key="LR", noise_level_key=None, **kwargs):
super().__init__(*args, **kwargs)
# assumes that neither the cond_stage nor the low_scale_model contain trainable params
assert not self.cond_stage_trainable
self.instantiate_low_stage(low_scale_config)
self.low_scale_key = low_scale_key
self.noise_level_key = noise_level_key
def instantiate_low_stage(self, config):
model = instantiate_from_config(config)
self.low_scale_model = model.eval()
self.low_scale_model.train = disabled_train
for param in self.low_scale_model.parameters():
param.requires_grad = False
@torch.no_grad()
def get_input(self, batch, k, cond_key=None, bs=None, log_mode=False):
if not log_mode:
z, c = super().get_input(batch, k, force_c_encode=True, bs=bs)
else:
z, c, x, xrec, xc = super().get_input(batch, self.first_stage_key, return_first_stage_outputs=True,
force_c_encode=True, return_original_cond=True, bs=bs)
x_low = batch[self.low_scale_key][:bs]
x_low = rearrange(x_low, 'b h w c -> b c h w')
x_low = x_low.to(memory_format=torch.contiguous_format).float()
zx, noise_level = self.low_scale_model(x_low)
if self.noise_level_key is not None:
# get noise level from batch instead, e.g. when extracting a custom noise level for bsr
raise NotImplementedError('TODO')
all_conds = {"c_concat": [zx], "c_crossattn": [c], "c_adm": noise_level}
if log_mode:
# TODO: maybe disable if too expensive
x_low_rec = self.low_scale_model.decode(zx)
return z, all_conds, x, xrec, xc, x_low, x_low_rec, noise_level
return z, all_conds
@torch.no_grad()
def log_images(self, batch, N=8, n_row=4, sample=True, ddim_steps=200, ddim_eta=1., return_keys=None,
plot_denoise_rows=False, plot_progressive_rows=True, plot_diffusion_rows=True,
unconditional_guidance_scale=1., unconditional_guidance_label=None, use_ema_scope=True,
**kwargs):
ema_scope = self.ema_scope if use_ema_scope else nullcontext
use_ddim = ddim_steps is not None
log = dict()
z, c, x, xrec, xc, x_low, x_low_rec, noise_level = self.get_input(batch, self.first_stage_key, bs=N,
log_mode=True)
N = min(x.shape[0], N)
n_row = min(x.shape[0], n_row)
log["inputs"] = x
log["reconstruction"] = xrec
log["x_lr"] = x_low
log[f"x_lr_rec_@noise_levels{'-'.join(map(lambda x: str(x), list(noise_level.cpu().numpy())))}"] = x_low_rec
if self.model.conditioning_key is not None:
if hasattr(self.cond_stage_model, "decode"):
xc = self.cond_stage_model.decode(c)
log["conditioning"] = xc
elif self.cond_stage_key in ["caption", "txt"]:
xc = log_txt_as_img((x.shape[2], x.shape[3]), batch[self.cond_stage_key], size=x.shape[2] // 25)
log["conditioning"] = xc
elif self.cond_stage_key in ['class_label', 'cls']:
xc = log_txt_as_img((x.shape[2], x.shape[3]), batch["human_label"], size=x.shape[2] // 25)
log['conditioning'] = xc
elif isimage(xc):
log["conditioning"] = xc
if ismap(xc):
log["original_conditioning"] = self.to_rgb(xc)
if plot_diffusion_rows:
# get diffusion row
diffusion_row = list()
z_start = z[:n_row]
for t in range(self.num_timesteps):
if t % self.log_every_t == 0 or t == self.num_timesteps - 1:
t = repeat(torch.tensor([t]), '1 -> b', b=n_row)
t = t.to(self.device).long()
noise = torch.randn_like(z_start)
z_noisy = self.q_sample(x_start=z_start, t=t, noise=noise)
diffusion_row.append(self.decode_first_stage(z_noisy))
diffusion_row = torch.stack(diffusion_row) # n_log_step, n_row, C, H, W
diffusion_grid = rearrange(diffusion_row, 'n b c h w -> b n c h w')
diffusion_grid = rearrange(diffusion_grid, 'b n c h w -> (b n) c h w')
diffusion_grid = make_grid(diffusion_grid, nrow=diffusion_row.shape[0])
log["diffusion_row"] = diffusion_grid
if sample:
# get denoise row
with ema_scope("Sampling"):
samples, z_denoise_row = self.sample_log(cond=c, batch_size=N, ddim=use_ddim,
ddim_steps=ddim_steps, eta=ddim_eta)
# samples, z_denoise_row = self.sample(cond=c, batch_size=N, return_intermediates=True)
x_samples = self.decode_first_stage(samples)
log["samples"] = x_samples
if plot_denoise_rows:
denoise_grid = self._get_denoise_row_from_list(z_denoise_row)
log["denoise_row"] = denoise_grid
if unconditional_guidance_scale > 1.0:
uc_tmp = self.get_unconditional_conditioning(N, unconditional_guidance_label)
# TODO explore better "unconditional" choices for the other keys
# maybe guide away from empty text label and highest noise level and maximally degraded zx?
uc = dict()
for k in c:
if k == "c_crossattn":
assert isinstance(c[k], list) and len(c[k]) == 1
uc[k] = [uc_tmp]
elif k == "c_adm": # todo: only run with text-based guidance?
assert isinstance(c[k], torch.Tensor)
#uc[k] = torch.ones_like(c[k]) * self.low_scale_model.max_noise_level
uc[k] = c[k]
elif isinstance(c[k], list):
uc[k] = [c[k][i] for i in range(len(c[k]))]
else:
uc[k] = c[k]
with ema_scope("Sampling with classifier-free guidance"):
samples_cfg, _ = self.sample_log(cond=c, batch_size=N, ddim=use_ddim,
ddim_steps=ddim_steps, eta=ddim_eta,
unconditional_guidance_scale=unconditional_guidance_scale,
unconditional_conditioning=uc,
)
x_samples_cfg = self.decode_first_stage(samples_cfg)
log[f"samples_cfg_scale_{unconditional_guidance_scale:.2f}"] = x_samples_cfg
if plot_progressive_rows:
with ema_scope("Plotting Progressives"):
img, progressives = self.progressive_denoising(c,
shape=(self.channels, self.image_size, self.image_size),
batch_size=N)
prog_row = self._get_denoise_row_from_list(progressives, desc="Progressive Generation")
log["progressive_row"] = prog_row
return log
class LatentFinetuneDiffusion(LatentDiffusion):
"""
Basis for different finetunas, such as inpainting or depth2image
To disable finetuning mode, set finetune_keys to None
"""
def __init__(self,
concat_keys: tuple,
finetune_keys=("model.diffusion_model.input_blocks.0.0.weight",
"model_ema.diffusion_modelinput_blocks00weight"
),
keep_finetune_dims=4,
# if model was trained without concat mode before and we would like to keep these channels
c_concat_log_start=None, # to log reconstruction of c_concat codes
c_concat_log_end=None,
*args, **kwargs
):
ckpt_path = kwargs.pop("ckpt_path", None)
ignore_keys = kwargs.pop("ignore_keys", list())
super().__init__(*args, **kwargs)
self.finetune_keys = finetune_keys
self.concat_keys = concat_keys
self.keep_dims = keep_finetune_dims
self.c_concat_log_start = c_concat_log_start
self.c_concat_log_end = c_concat_log_end
if exists(self.finetune_keys): assert exists(ckpt_path), 'can only finetune from a given checkpoint'
if exists(ckpt_path):
self.init_from_ckpt(ckpt_path, ignore_keys)
def init_from_ckpt(self, path, ignore_keys=list(), only_model=False):
sd = torch.load(path, map_location="cpu")
if "state_dict" in list(sd.keys()):
sd = sd["state_dict"]
keys = list(sd.keys())
for k in keys:
for ik in ignore_keys:
if k.startswith(ik):
print("Deleting key {} from state_dict.".format(k))
del sd[k]
# make it explicit, finetune by including extra input channels
if exists(self.finetune_keys) and k in self.finetune_keys:
new_entry = None
for name, param in self.named_parameters():
if name in self.finetune_keys:
print(
f"modifying key '{name}' and keeping its original {self.keep_dims} (channels) dimensions only")
new_entry = torch.zeros_like(param) # zero init
assert exists(new_entry), 'did not find matching parameter to modify'
new_entry[:, :self.keep_dims, ...] = sd[k]
sd[k] = new_entry
missing, unexpected = self.load_state_dict(sd, strict=False) if not only_model else self.model.load_state_dict(
sd, strict=False)
print(f"Restored from {path} with {len(missing)} missing and {len(unexpected)} unexpected keys")
if len(missing) > 0:
print(f"Missing Keys: {missing}")
if len(unexpected) > 0:
print(f"Unexpected Keys: {unexpected}")
@torch.no_grad()
def log_images(self, batch, N=8, n_row=4, sample=True, ddim_steps=200, ddim_eta=1., return_keys=None,
quantize_denoised=True, inpaint=True, plot_denoise_rows=False, plot_progressive_rows=True,
plot_diffusion_rows=True, unconditional_guidance_scale=1., unconditional_guidance_label=None,
use_ema_scope=True,
**kwargs):
ema_scope = self.ema_scope if use_ema_scope else nullcontext
use_ddim = ddim_steps is not None
log = dict()
z, c, x, xrec, xc = self.get_input(batch, self.first_stage_key, bs=N, return_first_stage_outputs=True)
c_cat, c = c["c_concat"][0], c["c_crossattn"][0]
N = min(x.shape[0], N)
n_row = min(x.shape[0], n_row)
log["inputs"] = x
log["reconstruction"] = xrec
if self.model.conditioning_key is not None:
if hasattr(self.cond_stage_model, "decode"):
xc = self.cond_stage_model.decode(c)
log["conditioning"] = xc
elif self.cond_stage_key in ["caption", "txt"]:
xc = log_txt_as_img((x.shape[2], x.shape[3]), batch[self.cond_stage_key], size=x.shape[2] // 25)
log["conditioning"] = xc
elif self.cond_stage_key in ['class_label', 'cls']:
xc = log_txt_as_img((x.shape[2], x.shape[3]), batch["human_label"], size=x.shape[2] // 25)
log['conditioning'] = xc
elif isimage(xc):
log["conditioning"] = xc
if ismap(xc):
log["original_conditioning"] = self.to_rgb(xc)
if not (self.c_concat_log_start is None and self.c_concat_log_end is None):
log["c_concat_decoded"] = self.decode_first_stage(c_cat[:, self.c_concat_log_start:self.c_concat_log_end])
if plot_diffusion_rows:
# get diffusion row
diffusion_row = list()
z_start = z[:n_row]
for t in range(self.num_timesteps):
if t % self.log_every_t == 0 or t == self.num_timesteps - 1:
t = repeat(torch.tensor([t]), '1 -> b', b=n_row)
t = t.to(self.device).long()
noise = torch.randn_like(z_start)
z_noisy = self.q_sample(x_start=z_start, t=t, noise=noise)
diffusion_row.append(self.decode_first_stage(z_noisy))
diffusion_row = torch.stack(diffusion_row) # n_log_step, n_row, C, H, W
diffusion_grid = rearrange(diffusion_row, 'n b c h w -> b n c h w')
diffusion_grid = rearrange(diffusion_grid, 'b n c h w -> (b n) c h w')
diffusion_grid = make_grid(diffusion_grid, nrow=diffusion_row.shape[0])
log["diffusion_row"] = diffusion_grid
if sample:
# get denoise row
with ema_scope("Sampling"):
samples, z_denoise_row = self.sample_log(cond={"c_concat": [c_cat], "c_crossattn": [c]},
batch_size=N, ddim=use_ddim,
ddim_steps=ddim_steps, eta=ddim_eta)
# samples, z_denoise_row = self.sample(cond=c, batch_size=N, return_intermediates=True)
x_samples = self.decode_first_stage(samples)
log["samples"] = x_samples
if plot_denoise_rows:
denoise_grid = self._get_denoise_row_from_list(z_denoise_row)
log["denoise_row"] = denoise_grid
if unconditional_guidance_scale > 1.0:
uc_cross = self.get_unconditional_conditioning(N, unconditional_guidance_label)
uc_cat = c_cat
uc_full = {"c_concat": [uc_cat], "c_crossattn": [uc_cross]}
with ema_scope("Sampling with classifier-free guidance"):
samples_cfg, _ = self.sample_log(cond={"c_concat": [c_cat], "c_crossattn": [c]},
batch_size=N, ddim=use_ddim,
ddim_steps=ddim_steps, eta=ddim_eta,
unconditional_guidance_scale=unconditional_guidance_scale,
unconditional_conditioning=uc_full,
)
x_samples_cfg = self.decode_first_stage(samples_cfg)
log[f"samples_cfg_scale_{unconditional_guidance_scale:.2f}"] = x_samples_cfg
return log
class LatentInpaintDiffusion(LatentFinetuneDiffusion):
"""
can either run as pure inpainting model (only concat mode) or with mixed conditionings,
e.g. mask as concat and text via cross-attn.
To disable finetuning mode, set finetune_keys to None
"""
def __init__(self,
concat_keys=("mask", "masked_image"),
masked_image_key="masked_image",
*args, **kwargs
):
super().__init__(concat_keys, *args, **kwargs)
self.masked_image_key = masked_image_key
assert self.masked_image_key in concat_keys
@torch.no_grad()
def get_input(self, batch, k, cond_key=None, bs=None, return_first_stage_outputs=False):
# note: restricted to non-trainable encoders currently
assert not self.cond_stage_trainable, 'trainable cond stages not yet supported for inpainting'
z, c, x, xrec, xc = super().get_input(batch, self.first_stage_key, return_first_stage_outputs=True,
force_c_encode=True, return_original_cond=True, bs=bs)
assert exists(self.concat_keys)
c_cat = list()
for ck in self.concat_keys:
cc = rearrange(batch[ck], 'b h w c -> b c h w').to(memory_format=torch.contiguous_format).float()
if bs is not None:
cc = cc[:bs]
cc = cc.to(self.device)
bchw = z.shape
if ck != self.masked_image_key:
cc = torch.nn.functional.interpolate(cc, size=bchw[-2:])
else:
cc = self.get_first_stage_encoding(self.encode_first_stage(cc))
c_cat.append(cc)
c_cat = torch.cat(c_cat, dim=1)
all_conds = {"c_concat": [c_cat], "c_crossattn": [c]}
if return_first_stage_outputs:
return z, all_conds, x, xrec, xc
return z, all_conds
@torch.no_grad()
def log_images(self, *args, **kwargs):
log = super(LatentInpaintDiffusion, self).log_images(*args, **kwargs)
log["masked_image"] = rearrange(args[0]["masked_image"],
'b h w c -> b c h w').to(memory_format=torch.contiguous_format).float()
return log
class LatentDepth2ImageDiffusion(LatentFinetuneDiffusion):
"""
condition on monocular depth estimation
"""
def __init__(self, depth_stage_config, concat_keys=("midas_in",), *args, **kwargs):
super().__init__(concat_keys=concat_keys, *args, **kwargs)
self.depth_model = instantiate_from_config(depth_stage_config)
self.depth_stage_key = concat_keys[0]
@torch.no_grad()
def get_input(self, batch, k, cond_key=None, bs=None, return_first_stage_outputs=False):
# note: restricted to non-trainable encoders currently
assert not self.cond_stage_trainable, 'trainable cond stages not yet supported for depth2img'
z, c, x, xrec, xc = super().get_input(batch, self.first_stage_key, return_first_stage_outputs=True,
force_c_encode=True, return_original_cond=True, bs=bs)
assert exists(self.concat_keys)
assert len(self.concat_keys) == 1
c_cat = list()
for ck in self.concat_keys:
cc = batch[ck]
if bs is not None:
cc = cc[:bs]
cc = cc.to(self.device)
cc = self.depth_model(cc)
cc = torch.nn.functional.interpolate(
cc,
size=z.shape[2:],
mode="bicubic",
align_corners=False,
)
depth_min, depth_max = torch.amin(cc, dim=[1, 2, 3], keepdim=True), torch.amax(cc, dim=[1, 2, 3],
keepdim=True)
cc = 2. * (cc - depth_min) / (depth_max - depth_min + 0.001) - 1.
c_cat.append(cc)
c_cat = torch.cat(c_cat, dim=1)
all_conds = {"c_concat": [c_cat], "c_crossattn": [c]}
if return_first_stage_outputs:
return z, all_conds, x, xrec, xc
return z, all_conds
@torch.no_grad()
def log_images(self, *args, **kwargs):
log = super().log_images(*args, **kwargs)
depth = self.depth_model(args[0][self.depth_stage_key])
depth_min, depth_max = torch.amin(depth, dim=[1, 2, 3], keepdim=True), \
torch.amax(depth, dim=[1, 2, 3], keepdim=True)
log["depth"] = 2. * (depth - depth_min) / (depth_max - depth_min) - 1.
return log
class LatentUpscaleFinetuneDiffusion(LatentFinetuneDiffusion):
"""
condition on low-res image (and optionally on some spatial noise augmentation)
"""
def __init__(self, concat_keys=("lr",), reshuffle_patch_size=None,
low_scale_config=None, low_scale_key=None, *args, **kwargs):
super().__init__(concat_keys=concat_keys, *args, **kwargs)
self.reshuffle_patch_size = reshuffle_patch_size
self.low_scale_model = None
if low_scale_config is not None:
print("Initializing a low-scale model")
assert exists(low_scale_key)
self.instantiate_low_stage(low_scale_config)
self.low_scale_key = low_scale_key
def instantiate_low_stage(self, config):
model = instantiate_from_config(config)
self.low_scale_model = model.eval()
self.low_scale_model.train = disabled_train
for param in self.low_scale_model.parameters():
param.requires_grad = False
@torch.no_grad()
def get_input(self, batch, k, cond_key=None, bs=None, return_first_stage_outputs=False):
# note: restricted to non-trainable encoders currently
assert not self.cond_stage_trainable, 'trainable cond stages not yet supported for upscaling-ft'
z, c, x, xrec, xc = super().get_input(batch, self.first_stage_key, return_first_stage_outputs=True,
force_c_encode=True, return_original_cond=True, bs=bs)
assert exists(self.concat_keys)
assert len(self.concat_keys) == 1
# optionally make spatial noise_level here
c_cat = list()
noise_level = None
for ck in self.concat_keys:
cc = batch[ck]
cc = rearrange(cc, 'b h w c -> b c h w')
if exists(self.reshuffle_patch_size):
assert isinstance(self.reshuffle_patch_size, int)
cc = rearrange(cc, 'b c (p1 h) (p2 w) -> b (p1 p2 c) h w',
p1=self.reshuffle_patch_size, p2=self.reshuffle_patch_size)
if bs is not None:
cc = cc[:bs]
cc = cc.to(self.device)
if exists(self.low_scale_model) and ck == self.low_scale_key:
cc, noise_level = self.low_scale_model(cc)
c_cat.append(cc)
c_cat = torch.cat(c_cat, dim=1)
if exists(noise_level):
all_conds = {"c_concat": [c_cat], "c_crossattn": [c], "c_adm": noise_level}
else:
all_conds = {"c_concat": [c_cat], "c_crossattn": [c]}
if return_first_stage_outputs:
return z, all_conds, x, xrec, xc
return z, all_conds
@torch.no_grad()
def log_images(self, *args, **kwargs):
log = super().log_images(*args, **kwargs)
log["lr"] = rearrange(args[0]["lr"], 'b h w c -> b c h w')
return log
class ImageEmbeddingConditionedLatentDiffusion(LatentDiffusion):
def __init__(self, embedder_config=None, embedding_key="jpg", embedding_dropout=0.5,
freeze_embedder=True, noise_aug_config=None, *args, **kwargs):
super().__init__(*args, **kwargs)
self.embed_key = embedding_key
self.embedding_dropout = embedding_dropout
# self._init_embedder(embedder_config, freeze_embedder)
self._init_noise_aug(noise_aug_config)
def _init_embedder(self, config, freeze=True):
embedder = instantiate_from_config(config)
if freeze:
self.embedder = embedder.eval()
self.embedder.train = disabled_train
for param in self.embedder.parameters():
param.requires_grad = False
def _init_noise_aug(self, config):
if config is not None:
# use the KARLO schedule for noise augmentation on CLIP image embeddings
noise_augmentor = instantiate_from_config(config)
assert isinstance(noise_augmentor, nn.Module)
noise_augmentor = noise_augmentor.eval()
noise_augmentor.train = disabled_train
self.noise_augmentor = noise_augmentor
else:
self.noise_augmentor = None
def get_input(self, batch, k, cond_key=None, bs=None, **kwargs):
outputs = LatentDiffusion.get_input(self, batch, k, bs=bs, **kwargs)
z, c = outputs[0], outputs[1]
img = batch[self.embed_key][:bs]
img = rearrange(img, 'b h w c -> b c h w')
c_adm = self.embedder(img)
if self.noise_augmentor is not None:
c_adm, noise_level_emb = self.noise_augmentor(c_adm)
# assume this gives embeddings of noise levels
c_adm = torch.cat((c_adm, noise_level_emb), 1)
if self.training:
c_adm = torch.bernoulli((1. - self.embedding_dropout) * torch.ones(c_adm.shape[0],
device=c_adm.device)[:, None]) * c_adm
all_conds = {"c_crossattn": [c], "c_adm": c_adm}
noutputs = [z, all_conds]
noutputs.extend(outputs[2:])
return noutputs
@torch.no_grad()
def log_images(self, batch, N=8, n_row=4, **kwargs):
log = dict()
z, c, x, xrec, xc = self.get_input(batch, self.first_stage_key, bs=N, return_first_stage_outputs=True,
return_original_cond=True)
log["inputs"] = x
log["reconstruction"] = xrec
assert self.model.conditioning_key is not None
assert self.cond_stage_key in ["caption", "txt"]
xc = log_txt_as_img((x.shape[2], x.shape[3]), batch[self.cond_stage_key], size=x.shape[2] // 25)
log["conditioning"] = xc
uc = self.get_unconditional_conditioning(N, kwargs.get('unconditional_guidance_label', ''))
unconditional_guidance_scale = kwargs.get('unconditional_guidance_scale', 5.)
uc_ = {"c_crossattn": [uc], "c_adm": c["c_adm"]}
ema_scope = self.ema_scope if kwargs.get('use_ema_scope', True) else nullcontext
with ema_scope(f"Sampling"):
samples_cfg, _ = self.sample_log(cond=c, batch_size=N, ddim=True,
ddim_steps=kwargs.get('ddim_steps', 50), eta=kwargs.get('ddim_eta', 0.),
unconditional_guidance_scale=unconditional_guidance_scale,
unconditional_conditioning=uc_, )
x_samples_cfg = self.decode_first_stage(samples_cfg)
log[f"samplescfg_scale_{unconditional_guidance_scale:.2f}"] = x_samples_cfg
return log
from typing import List, Tuple, Union
import torch
import torch.nn as nn
#from: https://github.com/kornia/kornia/blob/master/kornia/enhance/normalize.py
def enhance_normalize(data: torch.Tensor, mean: torch.Tensor, std: torch.Tensor) -> torch.Tensor:
r"""Normalize an image/video tensor with mean and standard deviation.
.. math::
\text{input[channel] = (input[channel] - mean[channel]) / std[channel]}
Where `mean` is :math:`(M_1, ..., M_n)` and `std` :math:`(S_1, ..., S_n)` for `n` channels,
Args:
data: Image tensor of size :math:`(B, C, *)`.
mean: Mean for each channel.
std: Standard deviations for each channel.
Return:
Normalised tensor with same size as input :math:`(B, C, *)`.
Examples:
>>> x = torch.rand(1, 4, 3, 3)
>>> out = normalize(x, torch.tensor([0.0]), torch.tensor([255.]))
>>> out.shape
torch.Size([1, 4, 3, 3])
>>> x = torch.rand(1, 4, 3, 3)
>>> mean = torch.zeros(4)
>>> std = 255. * torch.ones(4)
>>> out = normalize(x, mean, std)
>>> out.shape
torch.Size([1, 4, 3, 3])
"""
shape = data.shape
if len(mean.shape) == 0 or mean.shape[0] == 1:
mean = mean.expand(shape[1])
if len(std.shape) == 0 or std.shape[0] == 1:
std = std.expand(shape[1])
# Allow broadcast on channel dimension
if mean.shape and mean.shape[0] != 1:
if mean.shape[0] != data.shape[1] and mean.shape[:2] != data.shape[:2]:
raise ValueError(f"mean length and number of channels do not match. Got {mean.shape} and {data.shape}.")
# Allow broadcast on channel dimension
if std.shape and std.shape[0] != 1:
if std.shape[0] != data.shape[1] and std.shape[:2] != data.shape[:2]:
raise ValueError(f"std length and number of channels do not match. Got {std.shape} and {data.shape}.")
mean = torch.as_tensor(mean, device=data.device, dtype=data.dtype)
std = torch.as_tensor(std, device=data.device, dtype=data.dtype)
if mean.shape:
mean = mean[..., :, None]
if std.shape:
std = std[..., :, None]
out: torch.Tensor = (data.view(shape[0], shape[1], -1) - mean) / std
return out.view(shape)
import torch
import torch.nn as nn
from . import kornia_functions
from torch.utils.checkpoint import checkpoint
from transformers import T5Tokenizer, T5EncoderModel, CLIPTokenizer, CLIPTextModel
import open_clip
from ldm.util import default, count_params
class AbstractEncoder(nn.Module):
def __init__(self):
super().__init__()
def encode(self, *args, **kwargs):
raise NotImplementedError
class IdentityEncoder(AbstractEncoder):
def encode(self, x):
return x
class ClassEmbedder(nn.Module):
def __init__(self, embed_dim, n_classes=1000, key='class', ucg_rate=0.1):
super().__init__()
self.key = key
self.embedding = nn.Embedding(n_classes, embed_dim)
self.n_classes = n_classes
self.ucg_rate = ucg_rate
def forward(self, batch, key=None, disable_dropout=False):
if key is None:
key = self.key
# this is for use in crossattn
c = batch[key][:, None]
if self.ucg_rate > 0. and not disable_dropout:
mask = 1. - torch.bernoulli(torch.ones_like(c) * self.ucg_rate)
c = mask * c + (1 - mask) * torch.ones_like(c) * (self.n_classes - 1)
c = c.long()
c = self.embedding(c)
return c
def get_unconditional_conditioning(self, bs, device="cuda"):
uc_class = self.n_classes - 1 # 1000 classes --> 0 ... 999, one extra class for ucg (class 1000)
uc = torch.ones((bs,), device=device) * uc_class
uc = {self.key: uc}
return uc
def disabled_train(self, mode=True):
"""Overwrite model.train with this function to make sure train/eval mode
does not change anymore."""
return self
class FrozenT5Embedder(AbstractEncoder):
"""Uses the T5 transformer encoder for text"""
def __init__(self, version="google/t5-v1_1-large", device="cuda", max_length=77,
freeze=True): # others are google/t5-v1_1-xl and google/t5-v1_1-xxl
super().__init__()
self.tokenizer = T5Tokenizer.from_pretrained(version)
self.transformer = T5EncoderModel.from_pretrained(version)
self.device = device
self.max_length = max_length # TODO: typical value?
if freeze:
self.freeze()
def freeze(self):
self.transformer = self.transformer.eval()
# self.train = disabled_train
for param in self.parameters():
param.requires_grad = False
def forward(self, text):
batch_encoding = self.tokenizer(text, truncation=True, max_length=self.max_length, return_length=True,
return_overflowing_tokens=False, padding="max_length", return_tensors="pt")
tokens = batch_encoding["input_ids"].to(self.device)
outputs = self.transformer(input_ids=tokens)
z = outputs.last_hidden_state
return z
def encode(self, text):
return self(text)
class FrozenCLIPEmbedder(AbstractEncoder):
"""Uses the CLIP transformer encoder for text (from huggingface)"""
LAYERS = [
"last",
"pooled",
"hidden"
]
def __init__(self, version="openai/clip-vit-large-patch14", device="cuda", max_length=77,
freeze=True, layer="last", layer_idx=None): # clip-vit-base-patch32
super().__init__()
assert layer in self.LAYERS
self.tokenizer = CLIPTokenizer.from_pretrained(version)
self.transformer = CLIPTextModel.from_pretrained(version)
self.device = device
self.max_length = max_length
if freeze:
self.freeze()
self.layer = layer
self.layer_idx = layer_idx
if layer == "hidden":
assert layer_idx is not None
assert 0 <= abs(layer_idx) <= 12
def freeze(self):
self.transformer = self.transformer.eval()
# self.train = disabled_train
for param in self.parameters():
param.requires_grad = False
def forward(self, text):
batch_encoding = self.tokenizer(text, truncation=True, max_length=self.max_length, return_length=True,
return_overflowing_tokens=False, padding="max_length", return_tensors="pt")
tokens = batch_encoding["input_ids"].to(self.device)
outputs = self.transformer(input_ids=tokens, output_hidden_states=self.layer == "hidden")
if self.layer == "last":
z = outputs.last_hidden_state
elif self.layer == "pooled":
z = outputs.pooler_output[:, None, :]
else:
z = outputs.hidden_states[self.layer_idx]
return z
def encode(self, text):
return self(text)
class ClipImageEmbedder(nn.Module):
def __init__(
self,
model,
jit=False,
device='cuda' if torch.cuda.is_available() else 'cpu',
antialias=True,
ucg_rate=0.
):
super().__init__()
from clip import load as load_clip
self.model, _ = load_clip(name=model, device=device, jit=jit)
self.antialias = antialias
self.register_buffer('mean', torch.Tensor([0.48145466, 0.4578275, 0.40821073]), persistent=False)
self.register_buffer('std', torch.Tensor([0.26862954, 0.26130258, 0.27577711]), persistent=False)
self.ucg_rate = ucg_rate
def preprocess(self, x):
# normalize to [0,1]
# x = kornia_functions.geometry_resize(x, (224, 224),
# interpolation='bicubic', align_corners=True,
# antialias=self.antialias)
x = torch.nn.functional.interpolate(x, size=(224, 224), mode='bicubic', align_corners=True, antialias=True)
x = (x + 1.) / 2.
# re-normalize according to clip
x = kornia_functions.enhance_normalize(x, self.mean, self.std)
return x
def forward(self, x, no_dropout=False):
# x is assumed to be in range [-1,1]
out = self.model.encode_image(self.preprocess(x))
out = out.to(x.dtype)
if self.ucg_rate > 0. and not no_dropout:
out = torch.bernoulli((1. - self.ucg_rate) * torch.ones(out.shape[0], device=out.device))[:, None] * out
return out
class FrozenOpenCLIPEmbedder(AbstractEncoder):
"""
Uses the OpenCLIP transformer encoder for text
"""
LAYERS = [
# "pooled",
"last",
"penultimate"
]
def __init__(self, arch="ViT-H-14", version="laion2b_s32b_b79k", device="cuda", max_length=77,
freeze=True, layer="last"):
super().__init__()
assert layer in self.LAYERS
model, _, _ = open_clip.create_model_and_transforms(arch, device=torch.device('cpu'), pretrained=version)
del model.visual
self.model = model
self.device = device
self.max_length = max_length
if freeze:
self.freeze()
self.layer = layer
if self.layer == "last":
self.layer_idx = 0
elif self.layer == "penultimate":
self.layer_idx = 1
else:
raise NotImplementedError()
def freeze(self):
self.model = self.model.eval()
for param in self.parameters():
param.requires_grad = False
def forward(self, text):
tokens = open_clip.tokenize(text)
z = self.encode_with_transformer(tokens.to(self.device))
return z
def encode_with_transformer(self, text):
x = self.model.token_embedding(text) # [batch_size, n_ctx, d_model]
x = x + self.model.positional_embedding
x = x.permute(1, 0, 2) # NLD -> LND
x = self.text_transformer_forward(x, attn_mask=self.model.attn_mask)
x = x.permute(1, 0, 2) # LND -> NLD
x = self.model.ln_final(x)
return x
def text_transformer_forward(self, x: torch.Tensor, attn_mask=None):
for i, r in enumerate(self.model.transformer.resblocks):
if i == len(self.model.transformer.resblocks) - self.layer_idx:
break
if self.model.transformer.grad_checkpointing and not torch.jit.is_scripting():
x = checkpoint(r, x, attn_mask)
else:
x = r(x, attn_mask=attn_mask)
return x
def encode(self, text):
return self(text)
class FrozenOpenCLIPImageEmbedder(AbstractEncoder):
"""
Uses the OpenCLIP vision transformer encoder for images
"""
def __init__(self, arch="ViT-H-14", version="laion2b_s32b_b79k", device="cuda", max_length=77,
freeze=True, layer="pooled", antialias=True, ucg_rate=0.):
super().__init__()
model, _, _ = open_clip.create_model_and_transforms(arch, device=torch.device('cpu'),
pretrained=version, )
del model.transformer
self.model = model
self.device = device
self.max_length = max_length
if freeze:
self.freeze()
self.layer = layer
if self.layer == "penultimate":
raise NotImplementedError()
self.layer_idx = 1
self.antialias = antialias
self.register_buffer('mean', torch.Tensor([0.48145466, 0.4578275, 0.40821073]), persistent=False)
self.register_buffer('std', torch.Tensor([0.26862954, 0.26130258, 0.27577711]), persistent=False)
self.ucg_rate = ucg_rate
def preprocess(self, x):
# normalize to [0,1]
# x = kornia.geometry.resize(x, (224, 224),
# interpolation='bicubic', align_corners=True,
# antialias=self.antialias)
x = torch.nn.functional.interpolate(x, size=(224, 224), mode='bicubic', align_corners=True, antialias=True)
x = (x + 1.) / 2.
# renormalize according to clip
x = kornia_functions.enhance_normalize(x, self.mean, self.std)
return x
def freeze(self):
self.model = self.model.eval()
for param in self.parameters():
param.requires_grad = False
def forward(self, image, no_dropout=False):
z = self.encode_with_vision_transformer(image)
if self.ucg_rate > 0. and not no_dropout:
z = torch.bernoulli((1. - self.ucg_rate) * torch.ones(z.shape[0], device=z.device))[:, None] * z
return z
def encode_with_vision_transformer(self, img):
img = self.preprocess(img)
x = self.model.visual(img)
return x
def encode(self, text):
return self(text)
class FrozenCLIPT5Encoder(AbstractEncoder):
def __init__(self, clip_version="openai/clip-vit-large-patch14", t5_version="google/t5-v1_1-xl", device="cuda",
clip_max_length=77, t5_max_length=77):
super().__init__()
self.clip_encoder = FrozenCLIPEmbedder(clip_version, device, max_length=clip_max_length)
self.t5_encoder = FrozenT5Embedder(t5_version, device, max_length=t5_max_length)
print(f"{self.clip_encoder.__class__.__name__} has {count_params(self.clip_encoder) * 1.e-6:.2f} M parameters, "
f"{self.t5_encoder.__class__.__name__} comes with {count_params(self.t5_encoder) * 1.e-6:.2f} M params.")
def encode(self, text):
return self(text)
def forward(self, text):
clip_z = self.clip_encoder.encode(text)
t5_z = self.t5_encoder.encode(text)
return [clip_z, t5_z]
# based on https://github.com/isl-org/MiDaS
import cv2
import torch
import torch.nn as nn
from torchvision.transforms import Compose
from ldm.modules.midas.midas.dpt_depth import DPTDepthModel
from ldm.modules.midas.midas.midas_net import MidasNet
from ldm.modules.midas.midas.midas_net_custom import MidasNet_small
from ldm.modules.midas.midas.transforms import Resize, NormalizeImage, PrepareForNet
ISL_PATHS = {
"dpt_large": "midas_models/dpt_large-midas-2f21e586.pt",
"dpt_hybrid": "midas_models/dpt_hybrid-midas-501f0c75.pt",
"midas_v21": "",
"midas_v21_small": "",
}
def disabled_train(self, mode=True):
"""Overwrite model.train with this function to make sure train/eval mode
does not change anymore."""
return self
def load_midas_transform(model_type):
# https://github.com/isl-org/MiDaS/blob/master/run.py
# load transform only
if model_type == "dpt_large": # DPT-Large
net_w, net_h = 384, 384
resize_mode = "minimal"
normalization = NormalizeImage(mean=[0.5, 0.5, 0.5], std=[0.5, 0.5, 0.5])
elif model_type == "dpt_hybrid": # DPT-Hybrid
net_w, net_h = 384, 384
resize_mode = "minimal"
normalization = NormalizeImage(mean=[0.5, 0.5, 0.5], std=[0.5, 0.5, 0.5])
elif model_type == "midas_v21":
net_w, net_h = 384, 384
resize_mode = "upper_bound"
normalization = NormalizeImage(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225])
elif model_type == "midas_v21_small":
net_w, net_h = 256, 256
resize_mode = "upper_bound"
normalization = NormalizeImage(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225])
else:
assert False, f"model_type '{model_type}' not implemented, use: --model_type large"
transform = Compose(
[
Resize(
net_w,
net_h,
resize_target=None,
keep_aspect_ratio=True,
ensure_multiple_of=32,
resize_method=resize_mode,
image_interpolation_method=cv2.INTER_CUBIC,
),
normalization,
PrepareForNet(),
]
)
return transform
def load_model(model_type):
# https://github.com/isl-org/MiDaS/blob/master/run.py
# load network
model_path = ISL_PATHS[model_type]
if model_type == "dpt_large": # DPT-Large
model = DPTDepthModel(
path=model_path,
backbone="vitl16_384",
non_negative=True,
)
net_w, net_h = 384, 384
resize_mode = "minimal"
normalization = NormalizeImage(mean=[0.5, 0.5, 0.5], std=[0.5, 0.5, 0.5])
elif model_type == "dpt_hybrid": # DPT-Hybrid
model = DPTDepthModel(
path=model_path,
backbone="vitb_rn50_384",
non_negative=True,
)
net_w, net_h = 384, 384
resize_mode = "minimal"
normalization = NormalizeImage(mean=[0.5, 0.5, 0.5], std=[0.5, 0.5, 0.5])
elif model_type == "midas_v21":
model = MidasNet(model_path, non_negative=True)
net_w, net_h = 384, 384
resize_mode = "upper_bound"
normalization = NormalizeImage(
mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]
)
elif model_type == "midas_v21_small":
model = MidasNet_small(model_path, features=64, backbone="efficientnet_lite3", exportable=True,
non_negative=True, blocks={'expand': True})
net_w, net_h = 256, 256
resize_mode = "upper_bound"
normalization = NormalizeImage(
mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]
)
else:
print(f"model_type '{model_type}' not implemented, use: --model_type large")
assert False
transform = Compose(
[
Resize(
net_w,
net_h,
resize_target=None,
keep_aspect_ratio=True,
ensure_multiple_of=32,
resize_method=resize_mode,
image_interpolation_method=cv2.INTER_CUBIC,
),
normalization,
PrepareForNet(),
]
)
return model.eval(), transform
class MiDaSInference(nn.Module):
MODEL_TYPES_TORCH_HUB = [
"DPT_Large",
"DPT_Hybrid",
"MiDaS_small"
]
MODEL_TYPES_ISL = [
"dpt_large",
"dpt_hybrid",
"midas_v21",
"midas_v21_small",
]
def __init__(self, model_type):
super().__init__()
assert (model_type in self.MODEL_TYPES_ISL)
model, _ = load_model(model_type)
self.model = model
self.model.train = disabled_train
def forward(self, x):
# x in 0..1 as produced by calling self.transform on a 0..1 float64 numpy array
# NOTE: we expect that the correct transform has been called during dataloading.
with torch.no_grad():
prediction = self.model(x)
prediction = torch.nn.functional.interpolate(
prediction.unsqueeze(1),
size=x.shape[2:],
mode="bicubic",
align_corners=False,
)
assert prediction.shape == (x.shape[0], 1, x.shape[2], x.shape[3])
return prediction
import torch
class BaseModel(torch.nn.Module):
def load(self, path):
"""Load model from file.
Args:
path (str): file path
"""
parameters = torch.load(path, map_location=torch.device('cpu'))
if "optimizer" in parameters:
parameters = parameters["model"]
self.load_state_dict(parameters)
import torch
import torch.nn as nn
from .vit import (
_make_pretrained_vitb_rn50_384,
_make_pretrained_vitl16_384,
_make_pretrained_vitb16_384,
forward_vit,
)
def _make_encoder(backbone, features, use_pretrained, groups=1, expand=False, exportable=True, hooks=None, use_vit_only=False, use_readout="ignore",):
if backbone == "vitl16_384":
pretrained = _make_pretrained_vitl16_384(
use_pretrained, hooks=hooks, use_readout=use_readout
)
scratch = _make_scratch(
[256, 512, 1024, 1024], features, groups=groups, expand=expand
) # ViT-L/16 - 85.0% Top1 (backbone)
elif backbone == "vitb_rn50_384":
pretrained = _make_pretrained_vitb_rn50_384(
use_pretrained,
hooks=hooks,
use_vit_only=use_vit_only,
use_readout=use_readout,
)
scratch = _make_scratch(
[256, 512, 768, 768], features, groups=groups, expand=expand
) # ViT-H/16 - 85.0% Top1 (backbone)
elif backbone == "vitb16_384":
pretrained = _make_pretrained_vitb16_384(
use_pretrained, hooks=hooks, use_readout=use_readout
)
scratch = _make_scratch(
[96, 192, 384, 768], features, groups=groups, expand=expand
) # ViT-B/16 - 84.6% Top1 (backbone)
elif backbone == "resnext101_wsl":
pretrained = _make_pretrained_resnext101_wsl(use_pretrained)
scratch = _make_scratch([256, 512, 1024, 2048], features, groups=groups, expand=expand) # efficientnet_lite3
elif backbone == "efficientnet_lite3":
pretrained = _make_pretrained_efficientnet_lite3(use_pretrained, exportable=exportable)
scratch = _make_scratch([32, 48, 136, 384], features, groups=groups, expand=expand) # efficientnet_lite3
else:
print(f"Backbone '{backbone}' not implemented")
assert False
return pretrained, scratch
def _make_scratch(in_shape, out_shape, groups=1, expand=False):
scratch = nn.Module()
out_shape1 = out_shape
out_shape2 = out_shape
out_shape3 = out_shape
out_shape4 = out_shape
if expand==True:
out_shape1 = out_shape
out_shape2 = out_shape*2
out_shape3 = out_shape*4
out_shape4 = out_shape*8
scratch.layer1_rn = nn.Conv2d(
in_shape[0], out_shape1, kernel_size=3, stride=1, padding=1, bias=False, groups=groups
)
scratch.layer2_rn = nn.Conv2d(
in_shape[1], out_shape2, kernel_size=3, stride=1, padding=1, bias=False, groups=groups
)
scratch.layer3_rn = nn.Conv2d(
in_shape[2], out_shape3, kernel_size=3, stride=1, padding=1, bias=False, groups=groups
)
scratch.layer4_rn = nn.Conv2d(
in_shape[3], out_shape4, kernel_size=3, stride=1, padding=1, bias=False, groups=groups
)
return scratch
def _make_pretrained_efficientnet_lite3(use_pretrained, exportable=False):
efficientnet = torch.hub.load(
"rwightman/gen-efficientnet-pytorch",
"tf_efficientnet_lite3",
pretrained=use_pretrained,
exportable=exportable
)
return _make_efficientnet_backbone(efficientnet)
def _make_efficientnet_backbone(effnet):
pretrained = nn.Module()
pretrained.layer1 = nn.Sequential(
effnet.conv_stem, effnet.bn1, effnet.act1, *effnet.blocks[0:2]
)
pretrained.layer2 = nn.Sequential(*effnet.blocks[2:3])
pretrained.layer3 = nn.Sequential(*effnet.blocks[3:5])
pretrained.layer4 = nn.Sequential(*effnet.blocks[5:9])
return pretrained
def _make_resnet_backbone(resnet):
pretrained = nn.Module()
pretrained.layer1 = nn.Sequential(
resnet.conv1, resnet.bn1, resnet.relu, resnet.maxpool, resnet.layer1
)
pretrained.layer2 = resnet.layer2
pretrained.layer3 = resnet.layer3
pretrained.layer4 = resnet.layer4
return pretrained
def _make_pretrained_resnext101_wsl(use_pretrained):
resnet = torch.hub.load("facebookresearch/WSL-Images", "resnext101_32x8d_wsl")
return _make_resnet_backbone(resnet)
class Interpolate(nn.Module):
"""Interpolation module.
"""
def __init__(self, scale_factor, mode, align_corners=False):
"""Init.
Args:
scale_factor (float): scaling
mode (str): interpolation mode
"""
super(Interpolate, self).__init__()
self.interp = nn.functional.interpolate
self.scale_factor = scale_factor
self.mode = mode
self.align_corners = align_corners
def forward(self, x):
"""Forward pass.
Args:
x (tensor): input
Returns:
tensor: interpolated data
"""
x = self.interp(
x, scale_factor=self.scale_factor, mode=self.mode, align_corners=self.align_corners
)
return x
class ResidualConvUnit(nn.Module):
"""Residual convolution module.
"""
def __init__(self, features):
"""Init.
Args:
features (int): number of features
"""
super().__init__()
self.conv1 = nn.Conv2d(
features, features, kernel_size=3, stride=1, padding=1, bias=True
)
self.conv2 = nn.Conv2d(
features, features, kernel_size=3, stride=1, padding=1, bias=True
)
self.relu = nn.ReLU(inplace=True)
def forward(self, x):
"""Forward pass.
Args:
x (tensor): input
Returns:
tensor: output
"""
out = self.relu(x)
out = self.conv1(out)
out = self.relu(out)
out = self.conv2(out)
return out + x
class FeatureFusionBlock(nn.Module):
"""Feature fusion block.
"""
def __init__(self, features):
"""Init.
Args:
features (int): number of features
"""
super(FeatureFusionBlock, self).__init__()
self.resConfUnit1 = ResidualConvUnit(features)
self.resConfUnit2 = ResidualConvUnit(features)
def forward(self, *xs):
"""Forward pass.
Returns:
tensor: output
"""
output = xs[0]
if len(xs) == 2:
output += self.resConfUnit1(xs[1])
output = self.resConfUnit2(output)
output = nn.functional.interpolate(
output, scale_factor=2, mode="bilinear", align_corners=True
)
return output
class ResidualConvUnit_custom(nn.Module):
"""Residual convolution module.
"""
def __init__(self, features, activation, bn):
"""Init.
Args:
features (int): number of features
"""
super().__init__()
self.bn = bn
self.groups=1
self.conv1 = nn.Conv2d(
features, features, kernel_size=3, stride=1, padding=1, bias=True, groups=self.groups
)
self.conv2 = nn.Conv2d(
features, features, kernel_size=3, stride=1, padding=1, bias=True, groups=self.groups
)
if self.bn==True:
self.bn1 = nn.BatchNorm2d(features)
self.bn2 = nn.BatchNorm2d(features)
self.activation = activation
self.skip_add = nn.quantized.FloatFunctional()
def forward(self, x):
"""Forward pass.
Args:
x (tensor): input
Returns:
tensor: output
"""
out = self.activation(x)
out = self.conv1(out)
if self.bn==True:
out = self.bn1(out)
out = self.activation(out)
out = self.conv2(out)
if self.bn==True:
out = self.bn2(out)
if self.groups > 1:
out = self.conv_merge(out)
return self.skip_add.add(out, x)
# return out + x
class FeatureFusionBlock_custom(nn.Module):
"""Feature fusion block.
"""
def __init__(self, features, activation, deconv=False, bn=False, expand=False, align_corners=True):
"""Init.
Args:
features (int): number of features
"""
super(FeatureFusionBlock_custom, self).__init__()
self.deconv = deconv
self.align_corners = align_corners
self.groups=1
self.expand = expand
out_features = features
if self.expand==True:
out_features = features//2
self.out_conv = nn.Conv2d(features, out_features, kernel_size=1, stride=1, padding=0, bias=True, groups=1)
self.resConfUnit1 = ResidualConvUnit_custom(features, activation, bn)
self.resConfUnit2 = ResidualConvUnit_custom(features, activation, bn)
self.skip_add = nn.quantized.FloatFunctional()
def forward(self, *xs):
"""Forward pass.
Returns:
tensor: output
"""
output = xs[0]
if len(xs) == 2:
res = self.resConfUnit1(xs[1])
output = self.skip_add.add(output, res)
# output += res
output = self.resConfUnit2(output)
output = nn.functional.interpolate(
output, scale_factor=2, mode="bilinear", align_corners=self.align_corners
)
output = self.out_conv(output)
return output
import torch
import torch.nn as nn
import torch.nn.functional as F
from .base_model import BaseModel
from .blocks import (
FeatureFusionBlock,
FeatureFusionBlock_custom,
Interpolate,
_make_encoder,
forward_vit,
)
def _make_fusion_block(features, use_bn):
return FeatureFusionBlock_custom(
features,
nn.ReLU(False),
deconv=False,
bn=use_bn,
expand=False,
align_corners=True,
)
class DPT(BaseModel):
def __init__(
self,
head,
features=256,
backbone="vitb_rn50_384",
readout="project",
channels_last=False,
use_bn=False,
):
super(DPT, self).__init__()
self.channels_last = channels_last
hooks = {
"vitb_rn50_384": [0, 1, 8, 11],
"vitb16_384": [2, 5, 8, 11],
"vitl16_384": [5, 11, 17, 23],
}
# Instantiate backbone and reassemble blocks
self.pretrained, self.scratch = _make_encoder(
backbone,
features,
False, # Set to true of you want to train from scratch, uses ImageNet weights
groups=1,
expand=False,
exportable=False,
hooks=hooks[backbone],
use_readout=readout,
)
self.scratch.refinenet1 = _make_fusion_block(features, use_bn)
self.scratch.refinenet2 = _make_fusion_block(features, use_bn)
self.scratch.refinenet3 = _make_fusion_block(features, use_bn)
self.scratch.refinenet4 = _make_fusion_block(features, use_bn)
self.scratch.output_conv = head
def forward(self, x):
if self.channels_last == True:
x.contiguous(memory_format=torch.channels_last)
layer_1, layer_2, layer_3, layer_4 = forward_vit(self.pretrained, x)
layer_1_rn = self.scratch.layer1_rn(layer_1)
layer_2_rn = self.scratch.layer2_rn(layer_2)
layer_3_rn = self.scratch.layer3_rn(layer_3)
layer_4_rn = self.scratch.layer4_rn(layer_4)
path_4 = self.scratch.refinenet4(layer_4_rn)
path_3 = self.scratch.refinenet3(path_4, layer_3_rn)
path_2 = self.scratch.refinenet2(path_3, layer_2_rn)
path_1 = self.scratch.refinenet1(path_2, layer_1_rn)
out = self.scratch.output_conv(path_1)
return out
class DPTDepthModel(DPT):
def __init__(self, path=None, non_negative=True, **kwargs):
features = kwargs["features"] if "features" in kwargs else 256
head = nn.Sequential(
nn.Conv2d(features, features // 2, kernel_size=3, stride=1, padding=1),
Interpolate(scale_factor=2, mode="bilinear", align_corners=True),
nn.Conv2d(features // 2, 32, kernel_size=3, stride=1, padding=1),
nn.ReLU(True),
nn.Conv2d(32, 1, kernel_size=1, stride=1, padding=0),
nn.ReLU(True) if non_negative else nn.Identity(),
nn.Identity(),
)
super().__init__(head, **kwargs)
if path is not None:
self.load(path)
def forward(self, x):
return super().forward(x).squeeze(dim=1)
"""MidashNet: Network for monocular depth estimation trained by mixing several datasets.
This file contains code that is adapted from
https://github.com/thomasjpfan/pytorch_refinenet/blob/master/pytorch_refinenet/refinenet/refinenet_4cascade.py
"""
import torch
import torch.nn as nn
from .base_model import BaseModel
from .blocks import FeatureFusionBlock, Interpolate, _make_encoder
class MidasNet(BaseModel):
"""Network for monocular depth estimation.
"""
def __init__(self, path=None, features=256, non_negative=True):
"""Init.
Args:
path (str, optional): Path to saved model. Defaults to None.
features (int, optional): Number of features. Defaults to 256.
backbone (str, optional): Backbone network for encoder. Defaults to resnet50
"""
print("Loading weights: ", path)
super(MidasNet, self).__init__()
use_pretrained = False if path is None else True
self.pretrained, self.scratch = _make_encoder(backbone="resnext101_wsl", features=features, use_pretrained=use_pretrained)
self.scratch.refinenet4 = FeatureFusionBlock(features)
self.scratch.refinenet3 = FeatureFusionBlock(features)
self.scratch.refinenet2 = FeatureFusionBlock(features)
self.scratch.refinenet1 = FeatureFusionBlock(features)
self.scratch.output_conv = nn.Sequential(
nn.Conv2d(features, 128, kernel_size=3, stride=1, padding=1),
Interpolate(scale_factor=2, mode="bilinear"),
nn.Conv2d(128, 32, kernel_size=3, stride=1, padding=1),
nn.ReLU(True),
nn.Conv2d(32, 1, kernel_size=1, stride=1, padding=0),
nn.ReLU(True) if non_negative else nn.Identity(),
)
if path:
self.load(path)
def forward(self, x):
"""Forward pass.
Args:
x (tensor): input data (image)
Returns:
tensor: depth
"""
layer_1 = self.pretrained.layer1(x)
layer_2 = self.pretrained.layer2(layer_1)
layer_3 = self.pretrained.layer3(layer_2)
layer_4 = self.pretrained.layer4(layer_3)
layer_1_rn = self.scratch.layer1_rn(layer_1)
layer_2_rn = self.scratch.layer2_rn(layer_2)
layer_3_rn = self.scratch.layer3_rn(layer_3)
layer_4_rn = self.scratch.layer4_rn(layer_4)
path_4 = self.scratch.refinenet4(layer_4_rn)
path_3 = self.scratch.refinenet3(path_4, layer_3_rn)
path_2 = self.scratch.refinenet2(path_3, layer_2_rn)
path_1 = self.scratch.refinenet1(path_2, layer_1_rn)
out = self.scratch.output_conv(path_1)
return torch.squeeze(out, dim=1)
"""MidashNet: Network for monocular depth estimation trained by mixing several datasets.
This file contains code that is adapted from
https://github.com/thomasjpfan/pytorch_refinenet/blob/master/pytorch_refinenet/refinenet/refinenet_4cascade.py
"""
import torch
import torch.nn as nn
from .base_model import BaseModel
from .blocks import FeatureFusionBlock, FeatureFusionBlock_custom, Interpolate, _make_encoder
class MidasNet_small(BaseModel):
"""Network for monocular depth estimation.
"""
def __init__(self, path=None, features=64, backbone="efficientnet_lite3", non_negative=True, exportable=True, channels_last=False, align_corners=True,
blocks={'expand': True}):
"""Init.
Args:
path (str, optional): Path to saved model. Defaults to None.
features (int, optional): Number of features. Defaults to 256.
backbone (str, optional): Backbone network for encoder. Defaults to resnet50
"""
print("Loading weights: ", path)
super(MidasNet_small, self).__init__()
use_pretrained = False if path else True
self.channels_last = channels_last
self.blocks = blocks
self.backbone = backbone
self.groups = 1
features1=features
features2=features
features3=features
features4=features
self.expand = False
if "expand" in self.blocks and self.blocks['expand'] == True:
self.expand = True
features1=features
features2=features*2
features3=features*4
features4=features*8
self.pretrained, self.scratch = _make_encoder(self.backbone, features, use_pretrained, groups=self.groups, expand=self.expand, exportable=exportable)
self.scratch.activation = nn.ReLU(False)
self.scratch.refinenet4 = FeatureFusionBlock_custom(features4, self.scratch.activation, deconv=False, bn=False, expand=self.expand, align_corners=align_corners)
self.scratch.refinenet3 = FeatureFusionBlock_custom(features3, self.scratch.activation, deconv=False, bn=False, expand=self.expand, align_corners=align_corners)
self.scratch.refinenet2 = FeatureFusionBlock_custom(features2, self.scratch.activation, deconv=False, bn=False, expand=self.expand, align_corners=align_corners)
self.scratch.refinenet1 = FeatureFusionBlock_custom(features1, self.scratch.activation, deconv=False, bn=False, align_corners=align_corners)
self.scratch.output_conv = nn.Sequential(
nn.Conv2d(features, features//2, kernel_size=3, stride=1, padding=1, groups=self.groups),
Interpolate(scale_factor=2, mode="bilinear"),
nn.Conv2d(features//2, 32, kernel_size=3, stride=1, padding=1),
self.scratch.activation,
nn.Conv2d(32, 1, kernel_size=1, stride=1, padding=0),
nn.ReLU(True) if non_negative else nn.Identity(),
nn.Identity(),
)
if path:
self.load(path)
def forward(self, x):
"""Forward pass.
Args:
x (tensor): input data (image)
Returns:
tensor: depth
"""
if self.channels_last==True:
print("self.channels_last = ", self.channels_last)
x.contiguous(memory_format=torch.channels_last)
layer_1 = self.pretrained.layer1(x)
layer_2 = self.pretrained.layer2(layer_1)
layer_3 = self.pretrained.layer3(layer_2)
layer_4 = self.pretrained.layer4(layer_3)
layer_1_rn = self.scratch.layer1_rn(layer_1)
layer_2_rn = self.scratch.layer2_rn(layer_2)
layer_3_rn = self.scratch.layer3_rn(layer_3)
layer_4_rn = self.scratch.layer4_rn(layer_4)
path_4 = self.scratch.refinenet4(layer_4_rn)
path_3 = self.scratch.refinenet3(path_4, layer_3_rn)
path_2 = self.scratch.refinenet2(path_3, layer_2_rn)
path_1 = self.scratch.refinenet1(path_2, layer_1_rn)
out = self.scratch.output_conv(path_1)
return torch.squeeze(out, dim=1)
def fuse_model(m):
prev_previous_type = nn.Identity()
prev_previous_name = ''
previous_type = nn.Identity()
previous_name = ''
for name, module in m.named_modules():
if prev_previous_type == nn.Conv2d and previous_type == nn.BatchNorm2d and type(module) == nn.ReLU:
# print("FUSED ", prev_previous_name, previous_name, name)
torch.quantization.fuse_modules(m, [prev_previous_name, previous_name, name], inplace=True)
elif prev_previous_type == nn.Conv2d and previous_type == nn.BatchNorm2d:
# print("FUSED ", prev_previous_name, previous_name)
torch.quantization.fuse_modules(m, [prev_previous_name, previous_name], inplace=True)
# elif previous_type == nn.Conv2d and type(module) == nn.ReLU:
# print("FUSED ", previous_name, name)
# torch.quantization.fuse_modules(m, [previous_name, name], inplace=True)
prev_previous_type = previous_type
prev_previous_name = previous_name
previous_type = type(module)
previous_name = name
\ No newline at end of file
import numpy as np
import cv2
import math
def apply_min_size(sample, size, image_interpolation_method=cv2.INTER_AREA):
"""Rezise the sample to ensure the given size. Keeps aspect ratio.
Args:
sample (dict): sample
size (tuple): image size
Returns:
tuple: new size
"""
shape = list(sample["disparity"].shape)
if shape[0] >= size[0] and shape[1] >= size[1]:
return sample
scale = [0, 0]
scale[0] = size[0] / shape[0]
scale[1] = size[1] / shape[1]
scale = max(scale)
shape[0] = math.ceil(scale * shape[0])
shape[1] = math.ceil(scale * shape[1])
# resize
sample["image"] = cv2.resize(
sample["image"], tuple(shape[::-1]), interpolation=image_interpolation_method
)
sample["disparity"] = cv2.resize(
sample["disparity"], tuple(shape[::-1]), interpolation=cv2.INTER_NEAREST
)
sample["mask"] = cv2.resize(
sample["mask"].astype(np.float32),
tuple(shape[::-1]),
interpolation=cv2.INTER_NEAREST,
)
sample["mask"] = sample["mask"].astype(bool)
return tuple(shape)
class Resize(object):
"""Resize sample to given size (width, height).
"""
def __init__(
self,
width,
height,
resize_target=True,
keep_aspect_ratio=False,
ensure_multiple_of=1,
resize_method="lower_bound",
image_interpolation_method=cv2.INTER_AREA,
):
"""Init.
Args:
width (int): desired output width
height (int): desired output height
resize_target (bool, optional):
True: Resize the full sample (image, mask, target).
False: Resize image only.
Defaults to True.
keep_aspect_ratio (bool, optional):
True: Keep the aspect ratio of the input sample.
Output sample might not have the given width and height, and
resize behaviour depends on the parameter 'resize_method'.
Defaults to False.
ensure_multiple_of (int, optional):
Output width and height is constrained to be multiple of this parameter.
Defaults to 1.
resize_method (str, optional):
"lower_bound": Output will be at least as large as the given size.
"upper_bound": Output will be at max as large as the given size. (Output size might be smaller than given size.)
"minimal": Scale as least as possible. (Output size might be smaller than given size.)
Defaults to "lower_bound".
"""
self.__width = width
self.__height = height
self.__resize_target = resize_target
self.__keep_aspect_ratio = keep_aspect_ratio
self.__multiple_of = ensure_multiple_of
self.__resize_method = resize_method
self.__image_interpolation_method = image_interpolation_method
def constrain_to_multiple_of(self, x, min_val=0, max_val=None):
y = (np.round(x / self.__multiple_of) * self.__multiple_of).astype(int)
if max_val is not None and y > max_val:
y = (np.floor(x / self.__multiple_of) * self.__multiple_of).astype(int)
if y < min_val:
y = (np.ceil(x / self.__multiple_of) * self.__multiple_of).astype(int)
return y
def get_size(self, width, height):
# determine new height and width
scale_height = self.__height / height
scale_width = self.__width / width
if self.__keep_aspect_ratio:
if self.__resize_method == "lower_bound":
# scale such that output size is lower bound
if scale_width > scale_height:
# fit width
scale_height = scale_width
else:
# fit height
scale_width = scale_height
elif self.__resize_method == "upper_bound":
# scale such that output size is upper bound
if scale_width < scale_height:
# fit width
scale_height = scale_width
else:
# fit height
scale_width = scale_height
elif self.__resize_method == "minimal":
# scale as least as possbile
if abs(1 - scale_width) < abs(1 - scale_height):
# fit width
scale_height = scale_width
else:
# fit height
scale_width = scale_height
else:
raise ValueError(
f"resize_method {self.__resize_method} not implemented"
)
if self.__resize_method == "lower_bound":
new_height = self.constrain_to_multiple_of(
scale_height * height, min_val=self.__height
)
new_width = self.constrain_to_multiple_of(
scale_width * width, min_val=self.__width
)
elif self.__resize_method == "upper_bound":
new_height = self.constrain_to_multiple_of(
scale_height * height, max_val=self.__height
)
new_width = self.constrain_to_multiple_of(
scale_width * width, max_val=self.__width
)
elif self.__resize_method == "minimal":
new_height = self.constrain_to_multiple_of(scale_height * height)
new_width = self.constrain_to_multiple_of(scale_width * width)
else:
raise ValueError(f"resize_method {self.__resize_method} not implemented")
return (new_width, new_height)
def __call__(self, sample):
width, height = self.get_size(
sample["image"].shape[1], sample["image"].shape[0]
)
# resize sample
sample["image"] = cv2.resize(
sample["image"],
(width, height),
interpolation=self.__image_interpolation_method,
)
if self.__resize_target:
if "disparity" in sample:
sample["disparity"] = cv2.resize(
sample["disparity"],
(width, height),
interpolation=cv2.INTER_NEAREST,
)
if "depth" in sample:
sample["depth"] = cv2.resize(
sample["depth"], (width, height), interpolation=cv2.INTER_NEAREST
)
sample["mask"] = cv2.resize(
sample["mask"].astype(np.float32),
(width, height),
interpolation=cv2.INTER_NEAREST,
)
sample["mask"] = sample["mask"].astype(bool)
return sample
class NormalizeImage(object):
"""Normlize image by given mean and std.
"""
def __init__(self, mean, std):
self.__mean = mean
self.__std = std
def __call__(self, sample):
sample["image"] = (sample["image"] - self.__mean) / self.__std
return sample
class PrepareForNet(object):
"""Prepare sample for usage as network input.
"""
def __init__(self):
pass
def __call__(self, sample):
image = np.transpose(sample["image"], (2, 0, 1))
sample["image"] = np.ascontiguousarray(image).astype(np.float32)
if "mask" in sample:
sample["mask"] = sample["mask"].astype(np.float32)
sample["mask"] = np.ascontiguousarray(sample["mask"])
if "disparity" in sample:
disparity = sample["disparity"].astype(np.float32)
sample["disparity"] = np.ascontiguousarray(disparity)
if "depth" in sample:
depth = sample["depth"].astype(np.float32)
sample["depth"] = np.ascontiguousarray(depth)
return sample
import torch
import torch.nn as nn
import timm
import types
import math
import torch.nn.functional as F
class Slice(nn.Module):
def __init__(self, start_index=1):
super(Slice, self).__init__()
self.start_index = start_index
def forward(self, x):
return x[:, self.start_index :]
class AddReadout(nn.Module):
def __init__(self, start_index=1):
super(AddReadout, self).__init__()
self.start_index = start_index
def forward(self, x):
if self.start_index == 2:
readout = (x[:, 0] + x[:, 1]) / 2
else:
readout = x[:, 0]
return x[:, self.start_index :] + readout.unsqueeze(1)
class ProjectReadout(nn.Module):
def __init__(self, in_features, start_index=1):
super(ProjectReadout, self).__init__()
self.start_index = start_index
self.project = nn.Sequential(nn.Linear(2 * in_features, in_features), nn.GELU())
def forward(self, x):
readout = x[:, 0].unsqueeze(1).expand_as(x[:, self.start_index :])
features = torch.cat((x[:, self.start_index :], readout), -1)
return self.project(features)
class Transpose(nn.Module):
def __init__(self, dim0, dim1):
super(Transpose, self).__init__()
self.dim0 = dim0
self.dim1 = dim1
def forward(self, x):
x = x.transpose(self.dim0, self.dim1)
return x
def forward_vit(pretrained, x):
b, c, h, w = x.shape
glob = pretrained.model.forward_flex(x)
layer_1 = pretrained.activations["1"]
layer_2 = pretrained.activations["2"]
layer_3 = pretrained.activations["3"]
layer_4 = pretrained.activations["4"]
layer_1 = pretrained.act_postprocess1[0:2](layer_1)
layer_2 = pretrained.act_postprocess2[0:2](layer_2)
layer_3 = pretrained.act_postprocess3[0:2](layer_3)
layer_4 = pretrained.act_postprocess4[0:2](layer_4)
unflatten = nn.Sequential(
nn.Unflatten(
2,
torch.Size(
[
h // pretrained.model.patch_size[1],
w // pretrained.model.patch_size[0],
]
),
)
)
if layer_1.ndim == 3:
layer_1 = unflatten(layer_1)
if layer_2.ndim == 3:
layer_2 = unflatten(layer_2)
if layer_3.ndim == 3:
layer_3 = unflatten(layer_3)
if layer_4.ndim == 3:
layer_4 = unflatten(layer_4)
layer_1 = pretrained.act_postprocess1[3 : len(pretrained.act_postprocess1)](layer_1)
layer_2 = pretrained.act_postprocess2[3 : len(pretrained.act_postprocess2)](layer_2)
layer_3 = pretrained.act_postprocess3[3 : len(pretrained.act_postprocess3)](layer_3)
layer_4 = pretrained.act_postprocess4[3 : len(pretrained.act_postprocess4)](layer_4)
return layer_1, layer_2, layer_3, layer_4
def _resize_pos_embed(self, posemb, gs_h, gs_w):
posemb_tok, posemb_grid = (
posemb[:, : self.start_index],
posemb[0, self.start_index :],
)
gs_old = int(math.sqrt(len(posemb_grid)))
posemb_grid = posemb_grid.reshape(1, gs_old, gs_old, -1).permute(0, 3, 1, 2)
posemb_grid = F.interpolate(posemb_grid, size=(gs_h, gs_w), mode="bilinear")
posemb_grid = posemb_grid.permute(0, 2, 3, 1).reshape(1, gs_h * gs_w, -1)
posemb = torch.cat([posemb_tok, posemb_grid], dim=1)
return posemb
def forward_flex(self, x):
b, c, h, w = x.shape
pos_embed = self._resize_pos_embed(
self.pos_embed, h // self.patch_size[1], w // self.patch_size[0]
)
B = x.shape[0]
if hasattr(self.patch_embed, "backbone"):
x = self.patch_embed.backbone(x)
if isinstance(x, (list, tuple)):
x = x[-1] # last feature if backbone outputs list/tuple of features
x = self.patch_embed.proj(x).flatten(2).transpose(1, 2)
if getattr(self, "dist_token", None) is not None:
cls_tokens = self.cls_token.expand(
B, -1, -1
) # stole cls_tokens impl from Phil Wang, thanks
dist_token = self.dist_token.expand(B, -1, -1)
x = torch.cat((cls_tokens, dist_token, x), dim=1)
else:
cls_tokens = self.cls_token.expand(
B, -1, -1
) # stole cls_tokens impl from Phil Wang, thanks
x = torch.cat((cls_tokens, x), dim=1)
x = x + pos_embed
x = self.pos_drop(x)
for blk in self.blocks:
x = blk(x)
x = self.norm(x)
return x
activations = {}
def get_activation(name):
def hook(model, input, output):
activations[name] = output
return hook
def get_readout_oper(vit_features, features, use_readout, start_index=1):
if use_readout == "ignore":
readout_oper = [Slice(start_index)] * len(features)
elif use_readout == "add":
readout_oper = [AddReadout(start_index)] * len(features)
elif use_readout == "project":
readout_oper = [
ProjectReadout(vit_features, start_index) for out_feat in features
]
else:
assert (
False
), "wrong operation for readout token, use_readout can be 'ignore', 'add', or 'project'"
return readout_oper
def _make_vit_b16_backbone(
model,
features=[96, 192, 384, 768],
size=[384, 384],
hooks=[2, 5, 8, 11],
vit_features=768,
use_readout="ignore",
start_index=1,
):
pretrained = nn.Module()
pretrained.model = model
pretrained.model.blocks[hooks[0]].register_forward_hook(get_activation("1"))
pretrained.model.blocks[hooks[1]].register_forward_hook(get_activation("2"))
pretrained.model.blocks[hooks[2]].register_forward_hook(get_activation("3"))
pretrained.model.blocks[hooks[3]].register_forward_hook(get_activation("4"))
pretrained.activations = activations
readout_oper = get_readout_oper(vit_features, features, use_readout, start_index)
# 32, 48, 136, 384
pretrained.act_postprocess1 = nn.Sequential(
readout_oper[0],
Transpose(1, 2),
nn.Unflatten(2, torch.Size([size[0] // 16, size[1] // 16])),
nn.Conv2d(
in_channels=vit_features,
out_channels=features[0],
kernel_size=1,
stride=1,
padding=0,
),
nn.ConvTranspose2d(
in_channels=features[0],
out_channels=features[0],
kernel_size=4,
stride=4,
padding=0,
bias=True,
dilation=1,
groups=1,
),
)
pretrained.act_postprocess2 = nn.Sequential(
readout_oper[1],
Transpose(1, 2),
nn.Unflatten(2, torch.Size([size[0] // 16, size[1] // 16])),
nn.Conv2d(
in_channels=vit_features,
out_channels=features[1],
kernel_size=1,
stride=1,
padding=0,
),
nn.ConvTranspose2d(
in_channels=features[1],
out_channels=features[1],
kernel_size=2,
stride=2,
padding=0,
bias=True,
dilation=1,
groups=1,
),
)
pretrained.act_postprocess3 = nn.Sequential(
readout_oper[2],
Transpose(1, 2),
nn.Unflatten(2, torch.Size([size[0] // 16, size[1] // 16])),
nn.Conv2d(
in_channels=vit_features,
out_channels=features[2],
kernel_size=1,
stride=1,
padding=0,
),
)
pretrained.act_postprocess4 = nn.Sequential(
readout_oper[3],
Transpose(1, 2),
nn.Unflatten(2, torch.Size([size[0] // 16, size[1] // 16])),
nn.Conv2d(
in_channels=vit_features,
out_channels=features[3],
kernel_size=1,
stride=1,
padding=0,
),
nn.Conv2d(
in_channels=features[3],
out_channels=features[3],
kernel_size=3,
stride=2,
padding=1,
),
)
pretrained.model.start_index = start_index
pretrained.model.patch_size = [16, 16]
# We inject this function into the VisionTransformer instances so that
# we can use it with interpolated position embeddings without modifying the library source.
pretrained.model.forward_flex = types.MethodType(forward_flex, pretrained.model)
pretrained.model._resize_pos_embed = types.MethodType(
_resize_pos_embed, pretrained.model
)
return pretrained
def _make_pretrained_vitl16_384(pretrained, use_readout="ignore", hooks=None):
model = timm.create_model("vit_large_patch16_384", pretrained=pretrained)
hooks = [5, 11, 17, 23] if hooks == None else hooks
return _make_vit_b16_backbone(
model,
features=[256, 512, 1024, 1024],
hooks=hooks,
vit_features=1024,
use_readout=use_readout,
)
def _make_pretrained_vitb16_384(pretrained, use_readout="ignore", hooks=None):
model = timm.create_model("vit_base_patch16_384", pretrained=pretrained)
hooks = [2, 5, 8, 11] if hooks == None else hooks
return _make_vit_b16_backbone(
model, features=[96, 192, 384, 768], hooks=hooks, use_readout=use_readout
)
def _make_pretrained_deitb16_384(pretrained, use_readout="ignore", hooks=None):
model = timm.create_model("vit_deit_base_patch16_384", pretrained=pretrained)
hooks = [2, 5, 8, 11] if hooks == None else hooks
return _make_vit_b16_backbone(
model, features=[96, 192, 384, 768], hooks=hooks, use_readout=use_readout
)
def _make_pretrained_deitb16_distil_384(pretrained, use_readout="ignore", hooks=None):
model = timm.create_model(
"vit_deit_base_distilled_patch16_384", pretrained=pretrained
)
hooks = [2, 5, 8, 11] if hooks == None else hooks
return _make_vit_b16_backbone(
model,
features=[96, 192, 384, 768],
hooks=hooks,
use_readout=use_readout,
start_index=2,
)
def _make_vit_b_rn50_backbone(
model,
features=[256, 512, 768, 768],
size=[384, 384],
hooks=[0, 1, 8, 11],
vit_features=768,
use_vit_only=False,
use_readout="ignore",
start_index=1,
):
pretrained = nn.Module()
pretrained.model = model
if use_vit_only == True:
pretrained.model.blocks[hooks[0]].register_forward_hook(get_activation("1"))
pretrained.model.blocks[hooks[1]].register_forward_hook(get_activation("2"))
else:
pretrained.model.patch_embed.backbone.stages[0].register_forward_hook(
get_activation("1")
)
pretrained.model.patch_embed.backbone.stages[1].register_forward_hook(
get_activation("2")
)
pretrained.model.blocks[hooks[2]].register_forward_hook(get_activation("3"))
pretrained.model.blocks[hooks[3]].register_forward_hook(get_activation("4"))
pretrained.activations = activations
readout_oper = get_readout_oper(vit_features, features, use_readout, start_index)
if use_vit_only == True:
pretrained.act_postprocess1 = nn.Sequential(
readout_oper[0],
Transpose(1, 2),
nn.Unflatten(2, torch.Size([size[0] // 16, size[1] // 16])),
nn.Conv2d(
in_channels=vit_features,
out_channels=features[0],
kernel_size=1,
stride=1,
padding=0,
),
nn.ConvTranspose2d(
in_channels=features[0],
out_channels=features[0],
kernel_size=4,
stride=4,
padding=0,
bias=True,
dilation=1,
groups=1,
),
)
pretrained.act_postprocess2 = nn.Sequential(
readout_oper[1],
Transpose(1, 2),
nn.Unflatten(2, torch.Size([size[0] // 16, size[1] // 16])),
nn.Conv2d(
in_channels=vit_features,
out_channels=features[1],
kernel_size=1,
stride=1,
padding=0,
),
nn.ConvTranspose2d(
in_channels=features[1],
out_channels=features[1],
kernel_size=2,
stride=2,
padding=0,
bias=True,
dilation=1,
groups=1,
),
)
else:
pretrained.act_postprocess1 = nn.Sequential(
nn.Identity(), nn.Identity(), nn.Identity()
)
pretrained.act_postprocess2 = nn.Sequential(
nn.Identity(), nn.Identity(), nn.Identity()
)
pretrained.act_postprocess3 = nn.Sequential(
readout_oper[2],
Transpose(1, 2),
nn.Unflatten(2, torch.Size([size[0] // 16, size[1] // 16])),
nn.Conv2d(
in_channels=vit_features,
out_channels=features[2],
kernel_size=1,
stride=1,
padding=0,
),
)
pretrained.act_postprocess4 = nn.Sequential(
readout_oper[3],
Transpose(1, 2),
nn.Unflatten(2, torch.Size([size[0] // 16, size[1] // 16])),
nn.Conv2d(
in_channels=vit_features,
out_channels=features[3],
kernel_size=1,
stride=1,
padding=0,
),
nn.Conv2d(
in_channels=features[3],
out_channels=features[3],
kernel_size=3,
stride=2,
padding=1,
),
)
pretrained.model.start_index = start_index
pretrained.model.patch_size = [16, 16]
# We inject this function into the VisionTransformer instances so that
# we can use it with interpolated position embeddings without modifying the library source.
pretrained.model.forward_flex = types.MethodType(forward_flex, pretrained.model)
# We inject this function into the VisionTransformer instances so that
# we can use it with interpolated position embeddings without modifying the library source.
pretrained.model._resize_pos_embed = types.MethodType(
_resize_pos_embed, pretrained.model
)
return pretrained
def _make_pretrained_vitb_rn50_384(
pretrained, use_readout="ignore", hooks=None, use_vit_only=False
):
model = timm.create_model("vit_base_resnet50_384", pretrained=pretrained)
hooks = [0, 1, 8, 11] if hooks == None else hooks
return _make_vit_b_rn50_backbone(
model,
features=[256, 512, 768, 768],
size=[384, 384],
hooks=hooks,
use_vit_only=use_vit_only,
use_readout=use_readout,
)
"""Utils for monoDepth."""
import sys
import re
import numpy as np
import cv2
import torch
def read_pfm(path):
"""Read pfm file.
Args:
path (str): path to file
Returns:
tuple: (data, scale)
"""
with open(path, "rb") as file:
color = None
width = None
height = None
scale = None
endian = None
header = file.readline().rstrip()
if header.decode("ascii") == "PF":
color = True
elif header.decode("ascii") == "Pf":
color = False
else:
raise Exception("Not a PFM file: " + path)
dim_match = re.match(r"^(\d+)\s(\d+)\s$", file.readline().decode("ascii"))
if dim_match:
width, height = list(map(int, dim_match.groups()))
else:
raise Exception("Malformed PFM header.")
scale = float(file.readline().decode("ascii").rstrip())
if scale < 0:
# little-endian
endian = "<"
scale = -scale
else:
# big-endian
endian = ">"
data = np.fromfile(file, endian + "f")
shape = (height, width, 3) if color else (height, width)
data = np.reshape(data, shape)
data = np.flipud(data)
return data, scale
def write_pfm(path, image, scale=1):
"""Write pfm file.
Args:
path (str): pathto file
image (array): data
scale (int, optional): Scale. Defaults to 1.
"""
with open(path, "wb") as file:
color = None
if image.dtype.name != "float32":
raise Exception("Image dtype must be float32.")
image = np.flipud(image)
if len(image.shape) == 3 and image.shape[2] == 3: # color image
color = True
elif (
len(image.shape) == 2 or len(image.shape) == 3 and image.shape[2] == 1
): # greyscale
color = False
else:
raise Exception("Image must have H x W x 3, H x W x 1 or H x W dimensions.")
file.write("PF\n" if color else "Pf\n".encode())
file.write("%d %d\n".encode() % (image.shape[1], image.shape[0]))
endian = image.dtype.byteorder
if endian == "<" or endian == "=" and sys.byteorder == "little":
scale = -scale
file.write("%f\n".encode() % scale)
image.tofile(file)
def read_image(path):
"""Read image and output RGB image (0-1).
Args:
path (str): path to file
Returns:
array: RGB image (0-1)
"""
img = cv2.imread(path)
if img.ndim == 2:
img = cv2.cvtColor(img, cv2.COLOR_GRAY2BGR)
img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB) / 255.0
return img
def resize_image(img):
"""Resize image and make it fit for network.
Args:
img (array): image
Returns:
tensor: data ready for network
"""
height_orig = img.shape[0]
width_orig = img.shape[1]
if width_orig > height_orig:
scale = width_orig / 384
else:
scale = height_orig / 384
height = (np.ceil(height_orig / scale / 32) * 32).astype(int)
width = (np.ceil(width_orig / scale / 32) * 32).astype(int)
img_resized = cv2.resize(img, (width, height), interpolation=cv2.INTER_AREA)
img_resized = (
torch.from_numpy(np.transpose(img_resized, (2, 0, 1))).contiguous().float()
)
img_resized = img_resized.unsqueeze(0)
return img_resized
def resize_depth(depth, width, height):
"""Resize depth map and bring to CPU (numpy).
Args:
depth (tensor): depth
width (int): image width
height (int): image height
Returns:
array: processed depth
"""
depth = torch.squeeze(depth[0, :, :, :]).to("cpu")
depth_resized = cv2.resize(
depth.numpy(), (width, height), interpolation=cv2.INTER_CUBIC
)
return depth_resized
def write_depth(path, depth, bits=1):
"""Write depth map to pfm and png file.
Args:
path (str): filepath without extension
depth (array): depth
"""
write_pfm(path + ".pfm", depth.astype(np.float32))
depth_min = depth.min()
depth_max = depth.max()
max_val = (2**(8*bits))-1
if depth_max - depth_min > np.finfo("float").eps:
out = max_val * (depth - depth_min) / (depth_max - depth_min)
else:
out = np.zeros(depth.shape, dtype=depth.type)
if bits == 1:
cv2.imwrite(path + ".png", out.astype("uint8"))
elif bits == 2:
cv2.imwrite(path + ".png", out.astype("uint16"))
return
...@@ -1111,7 +1111,6 @@ def load_checkpoint_guess_config(ckpt_path, output_vae=True, output_clip=True, o ...@@ -1111,7 +1111,6 @@ def load_checkpoint_guess_config(ckpt_path, output_vae=True, output_clip=True, o
unet_config["context_dim"] = sd['model.diffusion_model.input_blocks.4.1.transformer_blocks.0.attn2.to_k.weight'].shape[1] unet_config["context_dim"] = sd['model.diffusion_model.input_blocks.4.1.transformer_blocks.0.attn2.to_k.weight'].shape[1]
sd_config["unet_config"] = {"target": "comfy.ldm.modules.diffusionmodules.openaimodel.UNetModel", "params": unet_config} sd_config["unet_config"] = {"target": "comfy.ldm.modules.diffusionmodules.openaimodel.UNetModel", "params": unet_config}
model_config = {"target": "comfy.ldm.models.diffusion.ddpm.LatentDiffusion", "params": sd_config}
unclip_model = False unclip_model = False
inpaint_model = False inpaint_model = False
...@@ -1121,11 +1120,9 @@ def load_checkpoint_guess_config(ckpt_path, output_vae=True, output_clip=True, o ...@@ -1121,11 +1120,9 @@ def load_checkpoint_guess_config(ckpt_path, output_vae=True, output_clip=True, o
sd_config["embedding_dropout"] = 0.25 sd_config["embedding_dropout"] = 0.25
sd_config["conditioning_key"] = 'crossattn-adm' sd_config["conditioning_key"] = 'crossattn-adm'
unclip_model = True unclip_model = True
model_config["target"] = "comfy.ldm.models.diffusion.ddpm.ImageEmbeddingConditionedLatentDiffusion"
elif unet_config["in_channels"] > 4: #inpainting model elif unet_config["in_channels"] > 4: #inpainting model
sd_config["conditioning_key"] = "hybrid" sd_config["conditioning_key"] = "hybrid"
sd_config["finetune_keys"] = None sd_config["finetune_keys"] = None
model_config["target"] = "comfy.ldm.models.diffusion.ddpm.LatentInpaintDiffusion"
inpaint_model = True inpaint_model = True
else: else:
sd_config["conditioning_key"] = "crossattn" sd_config["conditioning_key"] = "crossattn"
......
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment