Skip to content
GitLab
Menu
Projects
Groups
Snippets
Loading...
Help
Help
Support
Community forum
Keyboard shortcuts
?
Submit feedback
Contribute to GitLab
Sign in / Register
Toggle navigation
Menu
Open sidebar
chenpangpang
ComfyUI
Commits
58c7da36
Commit
58c7da36
authored
Aug 14, 2023
by
comfyanonymous
Browse files
Gpu variant of dpmpp_3m_sde. Note: use 3m with exponential or karras.
parent
ba319a34
Changes
2
Show whitespace changes
Inline
Side-by-side
Showing
2 changed files
with
24 additions
and
17 deletions
+24
-17
comfy/k_diffusion/sampling.py
comfy/k_diffusion/sampling.py
+23
-16
comfy/samplers.py
comfy/samplers.py
+1
-1
No files found.
comfy/k_diffusion/sampling.py
View file @
58c7da36
...
@@ -631,25 +631,13 @@ def sample_dpmpp_2m_sde(model, x, sigmas, extra_args=None, callback=None, disabl
...
@@ -631,25 +631,13 @@ def sample_dpmpp_2m_sde(model, x, sigmas, extra_args=None, callback=None, disabl
elif
solver_type
==
'midpoint'
:
elif
solver_type
==
'midpoint'
:
x
=
x
+
0.5
*
(
-
h
-
eta_h
).
expm1
().
neg
()
*
(
1
/
r
)
*
(
denoised
-
old_denoised
)
x
=
x
+
0.5
*
(
-
h
-
eta_h
).
expm1
().
neg
()
*
(
1
/
r
)
*
(
denoised
-
old_denoised
)
if
eta
:
x
=
x
+
noise_sampler
(
sigmas
[
i
],
sigmas
[
i
+
1
])
*
sigmas
[
i
+
1
]
*
(
-
2
*
eta_h
).
expm1
().
neg
().
sqrt
()
*
s_noise
x
=
x
+
noise_sampler
(
sigmas
[
i
],
sigmas
[
i
+
1
])
*
sigmas
[
i
+
1
]
*
(
-
2
*
eta_h
).
expm1
().
neg
().
sqrt
()
*
s_noise
old_denoised
=
denoised
old_denoised
=
denoised
h_last
=
h
h_last
=
h
return
x
return
x
@
torch
.
no_grad
()
def
sample_dpmpp_2m_sde_gpu
(
model
,
x
,
sigmas
,
extra_args
=
None
,
callback
=
None
,
disable
=
None
,
eta
=
1.
,
s_noise
=
1.
,
noise_sampler
=
None
,
solver_type
=
'midpoint'
):
sigma_min
,
sigma_max
=
sigmas
[
sigmas
>
0
].
min
(),
sigmas
.
max
()
noise_sampler
=
BrownianTreeNoiseSampler
(
x
,
sigma_min
,
sigma_max
,
seed
=
extra_args
.
get
(
"seed"
,
None
),
cpu
=
False
)
if
noise_sampler
is
None
else
noise_sampler
return
sample_dpmpp_2m_sde
(
model
,
x
,
sigmas
,
extra_args
=
extra_args
,
callback
=
callback
,
disable
=
disable
,
eta
=
eta
,
s_noise
=
s_noise
,
noise_sampler
=
noise_sampler
,
solver_type
=
solver_type
)
@
torch
.
no_grad
()
def
sample_dpmpp_sde_gpu
(
model
,
x
,
sigmas
,
extra_args
=
None
,
callback
=
None
,
disable
=
None
,
eta
=
1.
,
s_noise
=
1.
,
noise_sampler
=
None
,
r
=
1
/
2
):
sigma_min
,
sigma_max
=
sigmas
[
sigmas
>
0
].
min
(),
sigmas
.
max
()
noise_sampler
=
BrownianTreeNoiseSampler
(
x
,
sigma_min
,
sigma_max
,
seed
=
extra_args
.
get
(
"seed"
,
None
),
cpu
=
False
)
if
noise_sampler
is
None
else
noise_sampler
return
sample_dpmpp_sde
(
model
,
x
,
sigmas
,
extra_args
=
extra_args
,
callback
=
callback
,
disable
=
disable
,
eta
=
eta
,
s_noise
=
s_noise
,
noise_sampler
=
noise_sampler
,
r
=
r
)
@
torch
.
no_grad
()
@
torch
.
no_grad
()
def
sample_dpmpp_3m
(
model
,
x
,
sigmas
,
extra_args
=
None
,
callback
=
None
,
disable
=
None
,
eta
=
1.
,
s_noise
=
1.
,
noise_sampler
=
None
):
def
sample_dpmpp_3m
(
model
,
x
,
sigmas
,
extra_args
=
None
,
callback
=
None
,
disable
=
None
,
eta
=
1.
,
s_noise
=
1.
,
noise_sampler
=
None
):
"""DPM-Solver++(3M) without SDE-specific parts."""
"""DPM-Solver++(3M) without SDE-specific parts."""
...
@@ -680,8 +668,9 @@ def sample_dpmpp_3m(model, x, sigmas, extra_args=None, callback=None, disable=No
...
@@ -680,8 +668,9 @@ def sample_dpmpp_3m(model, x, sigmas, extra_args=None, callback=None, disable=No
def
sample_dpmpp_3m_sde
(
model
,
x
,
sigmas
,
extra_args
=
None
,
callback
=
None
,
disable
=
None
,
eta
=
1.
,
s_noise
=
1.
,
noise_sampler
=
None
):
def
sample_dpmpp_3m_sde
(
model
,
x
,
sigmas
,
extra_args
=
None
,
callback
=
None
,
disable
=
None
,
eta
=
1.
,
s_noise
=
1.
,
noise_sampler
=
None
):
"""DPM-Solver++(3M) SDE."""
"""DPM-Solver++(3M) SDE."""
seed
=
extra_args
.
get
(
"seed"
,
None
)
sigma_min
,
sigma_max
=
sigmas
[
sigmas
>
0
].
min
(),
sigmas
.
max
()
sigma_min
,
sigma_max
=
sigmas
[
sigmas
>
0
].
min
(),
sigmas
.
max
()
noise_sampler
=
BrownianTreeNoiseSampler
(
x
,
sigma_min
,
sigma_max
)
if
noise_sampler
is
None
else
noise_sampler
noise_sampler
=
BrownianTreeNoiseSampler
(
x
,
sigma_min
,
sigma_max
,
seed
=
seed
,
cpu
=
True
)
if
noise_sampler
is
None
else
noise_sampler
extra_args
=
{}
if
extra_args
is
None
else
extra_args
extra_args
=
{}
if
extra_args
is
None
else
extra_args
s_in
=
x
.
new_ones
([
x
.
shape
[
0
]])
s_in
=
x
.
new_ones
([
x
.
shape
[
0
]])
...
@@ -725,3 +714,21 @@ def sample_dpmpp_3m_sde(model, x, sigmas, extra_args=None, callback=None, disabl
...
@@ -725,3 +714,21 @@ def sample_dpmpp_3m_sde(model, x, sigmas, extra_args=None, callback=None, disabl
h_1
,
h_2
=
h
,
h_1
h_1
,
h_2
=
h
,
h_1
return
x
return
x
@
torch
.
no_grad
()
def
sample_dpmpp_3m_sde_gpu
(
model
,
x
,
sigmas
,
extra_args
=
None
,
callback
=
None
,
disable
=
None
,
eta
=
1.
,
s_noise
=
1.
,
noise_sampler
=
None
):
sigma_min
,
sigma_max
=
sigmas
[
sigmas
>
0
].
min
(),
sigmas
.
max
()
noise_sampler
=
BrownianTreeNoiseSampler
(
x
,
sigma_min
,
sigma_max
,
seed
=
extra_args
.
get
(
"seed"
,
None
),
cpu
=
False
)
if
noise_sampler
is
None
else
noise_sampler
return
sample_dpmpp_3m_sde
(
model
,
x
,
sigmas
,
extra_args
=
extra_args
,
callback
=
callback
,
disable
=
disable
,
eta
=
eta
,
s_noise
=
s_noise
,
noise_sampler
=
noise_sampler
)
@
torch
.
no_grad
()
def
sample_dpmpp_2m_sde_gpu
(
model
,
x
,
sigmas
,
extra_args
=
None
,
callback
=
None
,
disable
=
None
,
eta
=
1.
,
s_noise
=
1.
,
noise_sampler
=
None
,
solver_type
=
'midpoint'
):
sigma_min
,
sigma_max
=
sigmas
[
sigmas
>
0
].
min
(),
sigmas
.
max
()
noise_sampler
=
BrownianTreeNoiseSampler
(
x
,
sigma_min
,
sigma_max
,
seed
=
extra_args
.
get
(
"seed"
,
None
),
cpu
=
False
)
if
noise_sampler
is
None
else
noise_sampler
return
sample_dpmpp_2m_sde
(
model
,
x
,
sigmas
,
extra_args
=
extra_args
,
callback
=
callback
,
disable
=
disable
,
eta
=
eta
,
s_noise
=
s_noise
,
noise_sampler
=
noise_sampler
,
solver_type
=
solver_type
)
@
torch
.
no_grad
()
def
sample_dpmpp_sde_gpu
(
model
,
x
,
sigmas
,
extra_args
=
None
,
callback
=
None
,
disable
=
None
,
eta
=
1.
,
s_noise
=
1.
,
noise_sampler
=
None
,
r
=
1
/
2
):
sigma_min
,
sigma_max
=
sigmas
[
sigmas
>
0
].
min
(),
sigmas
.
max
()
noise_sampler
=
BrownianTreeNoiseSampler
(
x
,
sigma_min
,
sigma_max
,
seed
=
extra_args
.
get
(
"seed"
,
None
),
cpu
=
False
)
if
noise_sampler
is
None
else
noise_sampler
return
sample_dpmpp_sde
(
model
,
x
,
sigmas
,
extra_args
=
extra_args
,
callback
=
callback
,
disable
=
disable
,
eta
=
eta
,
s_noise
=
s_noise
,
noise_sampler
=
noise_sampler
,
r
=
r
)
comfy/samplers.py
View file @
58c7da36
...
@@ -528,7 +528,7 @@ class KSampler:
...
@@ -528,7 +528,7 @@ class KSampler:
SCHEDULERS
=
[
"normal"
,
"karras"
,
"exponential"
,
"simple"
,
"ddim_uniform"
]
SCHEDULERS
=
[
"normal"
,
"karras"
,
"exponential"
,
"simple"
,
"ddim_uniform"
]
SAMPLERS
=
[
"euler"
,
"euler_ancestral"
,
"heun"
,
"dpm_2"
,
"dpm_2_ancestral"
,
SAMPLERS
=
[
"euler"
,
"euler_ancestral"
,
"heun"
,
"dpm_2"
,
"dpm_2_ancestral"
,
"lms"
,
"dpm_fast"
,
"dpm_adaptive"
,
"dpmpp_2s_ancestral"
,
"dpmpp_sde"
,
"dpmpp_sde_gpu"
,
"lms"
,
"dpm_fast"
,
"dpm_adaptive"
,
"dpmpp_2s_ancestral"
,
"dpmpp_sde"
,
"dpmpp_sde_gpu"
,
"dpmpp_2m"
,
"dpmpp_2m_sde"
,
"dpmpp_2m_sde_gpu"
,
"dpmpp_3m"
,
"dpmpp_3m_sde"
,
"ddim"
,
"uni_pc"
,
"uni_pc_bh2"
]
"dpmpp_2m"
,
"dpmpp_2m_sde"
,
"dpmpp_2m_sde_gpu"
,
"dpmpp_3m"
,
"dpmpp_3m_sde"
,
"dpmpp_3m_sde_gpu"
,
"ddim"
,
"uni_pc"
,
"uni_pc_bh2"
]
def
__init__
(
self
,
model
,
steps
,
device
,
sampler
=
None
,
scheduler
=
None
,
denoise
=
None
,
model_options
=
{}):
def
__init__
(
self
,
model
,
steps
,
device
,
sampler
=
None
,
scheduler
=
None
,
denoise
=
None
,
model_options
=
{}):
self
.
model
=
model
self
.
model
=
model
...
...
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
.
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment