Skip to content
GitLab
Menu
Projects
Groups
Snippets
Loading...
Help
Help
Support
Community forum
Keyboard shortcuts
?
Submit feedback
Contribute to GitLab
Sign in / Register
Toggle navigation
Menu
Open sidebar
chenpangpang
ComfyUI
Commits
03e6e816
Commit
03e6e816
authored
Mar 06, 2024
by
comfyanonymous
Browse files
Set upscale algorithm to bilinear for stable cascade controlnet.
parent
03e83bb5
Changes
2
Show whitespace changes
Inline
Side-by-side
Showing
2 changed files
with
10 additions
and
6 deletions
+10
-6
comfy/controlnet.py
comfy/controlnet.py
+10
-5
comfy/ldm/cascade/controlnet.py
comfy/ldm/cascade/controlnet.py
+0
-1
No files found.
comfy/controlnet.py
View file @
03e6e816
...
...
@@ -39,6 +39,7 @@ class ControlBase:
self
.
global_average_pooling
=
False
self
.
timestep_range
=
None
self
.
compression_ratio
=
8
self
.
upscale_algorithm
=
'nearest-exact'
if
device
is
None
:
device
=
comfy
.
model_management
.
get_torch_device
()
...
...
@@ -80,6 +81,7 @@ class ControlBase:
c
.
timestep_percent_range
=
self
.
timestep_percent_range
c
.
global_average_pooling
=
self
.
global_average_pooling
c
.
compression_ratio
=
self
.
compression_ratio
c
.
upscale_algorithm
=
self
.
upscale_algorithm
def
inference_memory_requirements
(
self
,
dtype
):
if
self
.
previous_controlnet
is
not
None
:
...
...
@@ -165,7 +167,7 @@ class ControlNet(ControlBase):
if
self
.
cond_hint
is
not
None
:
del
self
.
cond_hint
self
.
cond_hint
=
None
self
.
cond_hint
=
comfy
.
utils
.
common_upscale
(
self
.
cond_hint_original
,
x_noisy
.
shape
[
3
]
*
self
.
compression_ratio
,
x_noisy
.
shape
[
2
]
*
self
.
compression_ratio
,
'nearest-exact'
,
"center"
).
to
(
dtype
).
to
(
self
.
device
)
self
.
cond_hint
=
comfy
.
utils
.
common_upscale
(
self
.
cond_hint_original
,
x_noisy
.
shape
[
3
]
*
self
.
compression_ratio
,
x_noisy
.
shape
[
2
]
*
self
.
compression_ratio
,
self
.
upscale_algorithm
,
"center"
).
to
(
dtype
).
to
(
self
.
device
)
if
x_noisy
.
shape
[
0
]
!=
self
.
cond_hint
.
shape
[
0
]:
self
.
cond_hint
=
broadcast_image_to
(
self
.
cond_hint
,
x_noisy
.
shape
[
0
],
batched_number
)
...
...
@@ -435,12 +437,13 @@ def load_controlnet(ckpt_path, model=None):
return
control
class
T2IAdapter
(
ControlBase
):
def
__init__
(
self
,
t2i_model
,
channels_in
,
compression_ratio
,
device
=
None
):
def
__init__
(
self
,
t2i_model
,
channels_in
,
compression_ratio
,
upscale_algorithm
,
device
=
None
):
super
().
__init__
(
device
)
self
.
t2i_model
=
t2i_model
self
.
channels_in
=
channels_in
self
.
control_input
=
None
self
.
compression_ratio
=
compression_ratio
self
.
upscale_algorithm
=
upscale_algorithm
def
scale_image_to
(
self
,
width
,
height
):
unshuffle_amount
=
self
.
t2i_model
.
unshuffle_amount
...
...
@@ -466,7 +469,7 @@ class T2IAdapter(ControlBase):
self
.
control_input
=
None
self
.
cond_hint
=
None
width
,
height
=
self
.
scale_image_to
(
x_noisy
.
shape
[
3
]
*
self
.
compression_ratio
,
x_noisy
.
shape
[
2
]
*
self
.
compression_ratio
)
self
.
cond_hint
=
comfy
.
utils
.
common_upscale
(
self
.
cond_hint_original
,
width
,
height
,
'nearest-exact'
,
"center"
).
float
().
to
(
self
.
device
)
self
.
cond_hint
=
comfy
.
utils
.
common_upscale
(
self
.
cond_hint_original
,
width
,
height
,
self
.
upscale_algorithm
,
"center"
).
float
().
to
(
self
.
device
)
if
self
.
channels_in
==
1
and
self
.
cond_hint
.
shape
[
1
]
>
1
:
self
.
cond_hint
=
torch
.
mean
(
self
.
cond_hint
,
1
,
keepdim
=
True
)
if
x_noisy
.
shape
[
0
]
!=
self
.
cond_hint
.
shape
[
0
]:
...
...
@@ -485,12 +488,13 @@ class T2IAdapter(ControlBase):
return
self
.
control_merge
(
control_input
,
mid
,
control_prev
,
x_noisy
.
dtype
)
def
copy
(
self
):
c
=
T2IAdapter
(
self
.
t2i_model
,
self
.
channels_in
,
self
.
compression_ratio
)
c
=
T2IAdapter
(
self
.
t2i_model
,
self
.
channels_in
,
self
.
compression_ratio
,
self
.
upscale_algorithm
)
self
.
copy_to
(
c
)
return
c
def
load_t2i_adapter
(
t2i_data
):
compression_ratio
=
8
upscale_algorithm
=
'nearest-exact'
if
'adapter'
in
t2i_data
:
t2i_data
=
t2i_data
[
'adapter'
]
...
...
@@ -522,6 +526,7 @@ def load_t2i_adapter(t2i_data):
elif
"backbone.0.0.weight"
in
keys
:
model_ad
=
comfy
.
ldm
.
cascade
.
controlnet
.
ControlNet
(
c_in
=
t2i_data
[
'backbone.0.0.weight'
].
shape
[
1
],
proj_blocks
=
[
0
,
4
,
8
,
12
,
51
,
55
,
59
,
63
])
compression_ratio
=
32
upscale_algorithm
=
'bilinear'
else
:
return
None
...
...
@@ -532,4 +537,4 @@ def load_t2i_adapter(t2i_data):
if
len
(
unexpected
)
>
0
:
print
(
"t2i unexpected"
,
unexpected
)
return
T2IAdapter
(
model_ad
,
model_ad
.
input_channels
,
compression_ratio
)
return
T2IAdapter
(
model_ad
,
model_ad
.
input_channels
,
compression_ratio
,
upscale_algorithm
)
comfy/ldm/cascade/controlnet.py
View file @
03e6e816
...
...
@@ -86,7 +86,6 @@ class ControlNet(nn.Module):
self
.
unshuffle_amount
=
8
def
forward
(
self
,
x
):
print
(
x
)
x
=
self
.
backbone
(
x
)
proj_outputs
=
[
None
for
_
in
range
(
max
(
self
.
proj_blocks
)
+
1
)]
for
i
,
idx
in
enumerate
(
self
.
proj_blocks
):
...
...
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
.
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment