import sglang as sgl @sgl.function def tool_use(s, question): s += "To answer this question: " + question + ", " s += "I need to use a " + sgl.gen("tool", choices=["calculator", "web browser"]) + ". " if s["tool"] == "calculator": s += "The math expression is" + sgl.gen("expression") elif s["tool"] == "web browser": s += "The website url is" + sgl.gen("url") @sgl.function def tip_suggestion(s): s += ( "Here are two tips for staying healthy: " "1. Balanced Diet. 2. Regular Exercise.\n\n" ) forks = s.fork(2) for i, f in enumerate(forks): f += f"Now, expand tip {i+1} into a paragraph:\n" f += sgl.gen(f"detailed_tip", max_tokens=256, stop="\n\n") s += "Tip 1:" + forks[0]["detailed_tip"] + "\n" s += "Tip 2:" + forks[1]["detailed_tip"] + "\n" s += "In summary" + sgl.gen("summary") @sgl.function def text_qa(s, question): s += "Q: " + question + "\n" s += "A:" + sgl.gen("answer", stop="\n") def driver_tool_use(): state = tool_use.run(question="What is the capital of the United States?") print(state.text()) print("\n") def driver_tip_suggestion(): state = tip_suggestion.run() print(state.text()) print("\n") def driver_batching(): states = text_qa.run_batch( [ {"question": "What is the capital of the United Kingdom?"}, {"question": "What is the capital of France?"}, {"question": "What is the capital of Japan?"}, ], ) for s in states: print(s.text()) print("\n") def driver_stream(): state = text_qa.run( question="What is the capital of France?", temperature=0.1) for out in state.text_iter(): print(out, end="", flush=True) print("\n") if __name__ == "__main__": sgl.set_default_backend(sgl.OpenAI("gpt-3.5-turbo-instruct")) driver_tool_use() driver_tip_suggestion() driver_batching() driver_stream()