import unittest import requests import torch import sglang as sgl from sglang.srt.utils import kill_process_tree from sglang.srt.utils.hf_transformers_utils import get_tokenizer from sglang.test.test_utils import ( DEFAULT_EAGLE_DRAFT_MODEL_FOR_TEST, DEFAULT_EAGLE_TARGET_MODEL_FOR_TEST, DEFAULT_EAGLE_TARGET_MODEL_FOR_TEST_EAGLE3, DEFAULT_MODEL_NAME_FOR_TEST_EAGLE3, DEFAULT_MODEL_NAME_FOR_TEST_MLA, DEFAULT_TIMEOUT_FOR_SERVER_LAUNCH, DEFAULT_URL_FOR_TEST, CustomTestCase, is_in_ci, popen_launch_server, ) torch_dtype = torch.float16 prefill_tolerance = 5e-2 decode_tolerance: float = 5e-2 class TestEAGLEEngine(CustomTestCase): BASE_CONFIG = { "model_path": DEFAULT_EAGLE_TARGET_MODEL_FOR_TEST, "speculative_draft_model_path": DEFAULT_EAGLE_DRAFT_MODEL_FOR_TEST, "speculative_algorithm": "EAGLE", "speculative_num_steps": 5, "speculative_eagle_topk": 4, "speculative_num_draft_tokens": 8, "mem_fraction_static": 0.7, "cuda_graph_max_bs": 5, } NUM_CONFIGS = 2 THRESHOLDS = { "batch_avg_accept_len": 1.9, "accept_len": 3.6, } def setUp(self): self.prompt = "Today is a sunny day and I like" self.sampling_params = {"temperature": 0, "max_new_tokens": 8} ref_engine = sgl.Engine( model_path=self.BASE_CONFIG["model_path"], cuda_graph_max_bs=1 ) self.ref_output = ref_engine.generate(self.prompt, self.sampling_params)["text"] ref_engine.shutdown() def test_correctness(self): configs = [ # Basic config self.BASE_CONFIG, # Chunked prefill {**self.BASE_CONFIG, "chunked_prefill_size": 4}, ] for i, config in enumerate(configs[: self.NUM_CONFIGS]): with self.subTest(i=i): print(f"{config=}") engine = sgl.Engine(**config, log_level="info", decode_log_interval=10) try: self._test_single_generation(engine) self._test_batch_generation(engine) self._test_eos_token(engine) self._test_acc_length(engine) finally: engine.flush_cache() # check engine alive engine.shutdown() print("=" * 100) def _test_single_generation(self, engine): output = engine.generate(self.prompt, self.sampling_params)["text"] print(f"{output=}, {self.ref_output=}") self.assertEqual(output, self.ref_output) def _test_batch_generation(self, engine): prompts = [ "Hello, my name is", "The president of the United States is", "The capital of France is", "The future of AI is", ] params = {"temperature": 0, "max_new_tokens": 50} outputs = engine.generate(prompts, params) for prompt, output in zip(prompts, outputs): print(f"Prompt: {prompt}") print(f"Generated: {output['text']}") print("-" * 40) print(f"{engine.get_server_info()=}") avg_spec_accept_length = engine.get_server_info()["internal_states"][0][ "avg_spec_accept_length" ] print(f"{avg_spec_accept_length=}") self.assertGreater( avg_spec_accept_length, self.THRESHOLDS["batch_avg_accept_len"] ) def _test_eos_token(self, engine): prompt = "[INST] <>\nYou are a helpful assistant.\n<>\nToday is a sunny day and I like [/INST]" params = { "temperature": 0.1, "max_new_tokens": 1024, "skip_special_tokens": False, } tokenizer = get_tokenizer(DEFAULT_EAGLE_TARGET_MODEL_FOR_TEST) output = engine.generate(prompt, params)["text"] print(f"{output=}") tokens = tokenizer.encode(output, truncation=False) self.assertNotIn(tokenizer.eos_token_id, tokens) def _test_acc_length(self, engine): prompt = [ "Human: Give me a fully functional FastAPI server. Show the python code.\n\nAssistant:", ] * 5 # test batched generation sampling_params = {"temperature": 0, "max_new_tokens": 512} output = engine.generate(prompt, sampling_params) output = output[0] if "spec_verify_ct" in output["meta_info"]: acc_length = ( output["meta_info"]["completion_tokens"] / output["meta_info"]["spec_verify_ct"] ) else: acc_length = 1.0 speed = ( output["meta_info"]["completion_tokens"] / output["meta_info"]["e2e_latency"] ) print(f"{acc_length=:.4f}, {speed=}") self.assertGreater(acc_length, self.THRESHOLDS["accept_len"]) class TestEAGLEEngineTokenMap(TestEAGLEEngine): BASE_CONFIG = { "model_path": "meta-llama/Meta-Llama-3-8B-Instruct", "speculative_draft_model_path": "lmsys/sglang-EAGLE-LLaMA3-Instruct-8B", "speculative_algorithm": "EAGLE", "speculative_num_steps": 5, "speculative_eagle_topk": 4, "speculative_num_draft_tokens": 8, "speculative_token_map": "thunlp/LLaMA3-Instruct-8B-FR-Spec/freq_32768.pt", "mem_fraction_static": 0.7, "cuda_graph_max_bs": 5, "dtype": "float16", } NUM_CONFIGS = 1 THRESHOLDS = { "batch_avg_accept_len": 1.9, "accept_len": 2.5, } class TestEAGLE3Engine(TestEAGLEEngine): BASE_CONFIG = { "model_path": DEFAULT_EAGLE_TARGET_MODEL_FOR_TEST_EAGLE3, "speculative_draft_model_path": DEFAULT_MODEL_NAME_FOR_TEST_EAGLE3, "speculative_algorithm": "EAGLE3", "speculative_num_steps": 5, "speculative_eagle_topk": 16, "speculative_num_draft_tokens": 64, "mem_fraction_static": 0.7, "cuda_graph_max_bs": 5, "dtype": "float16", } NUM_CONFIGS = 1 THRESHOLDS = { "batch_avg_accept_len": 1.75, "accept_len": 3.1, } class TestEAGLERadixCache(CustomTestCase): BASE_CONFIG = { "model_path": DEFAULT_EAGLE_TARGET_MODEL_FOR_TEST_EAGLE3, "speculative_draft_model_path": DEFAULT_MODEL_NAME_FOR_TEST_EAGLE3, "speculative_algorithm": "EAGLE3", "speculative_num_steps": 2, "speculative_eagle_topk": 1, "speculative_num_draft_tokens": 3, "mem_fraction_static": 0.7, "cuda_graph_max_bs": 5, "dtype": "float16", } def test_correctness(self): configs = [ # Basic config self.BASE_CONFIG, # Chunked prefill {**self.BASE_CONFIG, "chunked_prefill_size": 64}, # Chunked prefill & Page Size > 1 {**self.BASE_CONFIG, "chunked_prefill_size": 64, "page_size": 4}, ] for i, config in enumerate(configs): with self.subTest(i=i): print(f"{config=}") engine = sgl.Engine(**config, log_level="info", decode_log_interval=10) try: self._test_acc_length(engine) finally: engine.shutdown() print("=" * 100) def _test_acc_length(self, engine): warmup_prompt = [ "Human: Give me a fully functional FastAPI server. Show the python code.\n\nAssistant:", ] sampling_params = {"temperature": 0, "max_new_tokens": 512} output = engine.generate(warmup_prompt, sampling_params) test_prompt = [ "<|start_header_id|>system<|end_header_id|>\n\nYou are a helpful, respectful and honest assistant. Always answer as helpfully as possible, while being safe. Your answers should not include any harmful, unethical, racist, sexist, toxic, dangerous, or illegal content. Please ensure that your responses are socially unbiased and positive in nature.\n\nIf a question does not make any sense, or is not factually coherent, explain why instead of answering something not correct. If you don't know the answer to a question, please don't share false information.<|eot_id|><|start_header_id|>user<|end_header_id|>\n\nGive me a fully functional FastAPI server. Show the python code.<|eot_id|><|start_header_id|>assistant<|end_header_id|>\n\n" ] output = engine.generate(test_prompt, sampling_params) output = output[0] if "spec_verify_ct" in output["meta_info"]: acc_length = ( output["meta_info"]["completion_tokens"] / output["meta_info"]["spec_verify_ct"] ) else: acc_length = 1.0 speed = ( output["meta_info"]["completion_tokens"] / output["meta_info"]["e2e_latency"] ) print(f"{acc_length=:.4f}, {speed=}") self.assertGreater(acc_length, 2.5) @unittest.skipIf(is_in_ci(), "To reduce the CI execution time.") class TestEAGLEDraftExtend(CustomTestCase): @classmethod def setUpClass(cls): cls.base_url = DEFAULT_URL_FOR_TEST cls.process = popen_launch_server( DEFAULT_EAGLE_TARGET_MODEL_FOR_TEST, cls.base_url, timeout=DEFAULT_TIMEOUT_FOR_SERVER_LAUNCH, other_args=[ "--speculative-algorithm", "EAGLE", "--speculative-draft-model-path", DEFAULT_EAGLE_DRAFT_MODEL_FOR_TEST, "--speculative-num-steps", 1, "--speculative-eagle-topk", 1, "--speculative-num-draft-tokens", 2, "--max-running-requests", 4, "--attention-backend", "fa3", ], ) cls.accept_len_threshold = 1.50 @classmethod def tearDownClass(cls): kill_process_tree(cls.process.pid) def test_one_batch_accept_length(self): resp = requests.get(self.base_url + "/flush_cache") self.assertEqual(resp.status_code, 200) prompts = [ "Hello, my name is", "The president of the United States is", "The capital of France is", "The future of AI is", ] url = self.base_url + "/generate" data = { "text": prompts, "sampling_params": { "temperature": 0, "max_new_tokens": 512, }, } response = requests.post(url, json=data) self.assertEqual(response.status_code, 200) outputs = response.json() for i in range(len(prompts)): output = outputs[i] if "spec_verify_ct" in output["meta_info"]: acc_length = ( output["meta_info"]["completion_tokens"] / output["meta_info"]["spec_verify_ct"] ) else: acc_length = 1.0 print(f"{acc_length=}") self.assertGreater(acc_length, self.accept_len_threshold) class TestEAGLEDraftExtendFlashinfer(TestEAGLEDraftExtend): @classmethod def setUpClass(cls): cls.base_url = DEFAULT_URL_FOR_TEST cls.process = popen_launch_server( DEFAULT_EAGLE_TARGET_MODEL_FOR_TEST, cls.base_url, timeout=DEFAULT_TIMEOUT_FOR_SERVER_LAUNCH, other_args=[ "--speculative-algorithm", "EAGLE", "--speculative-draft-model-path", DEFAULT_EAGLE_DRAFT_MODEL_FOR_TEST, "--speculative-num-steps", 1, "--speculative-eagle-topk", 1, "--speculative-num-draft-tokens", 2, "--max-running-requests", 4, "--attention-backend", "flashinfer", ], ) cls.accept_len_threshold = 1.50 @unittest.skipIf(is_in_ci(), "To reduce the CI execution time.") class TestEAGLEDraftExtendTriton(TestEAGLEDraftExtend): @classmethod def setUpClass(cls): cls.base_url = DEFAULT_URL_FOR_TEST cls.process = popen_launch_server( DEFAULT_EAGLE_TARGET_MODEL_FOR_TEST, cls.base_url, timeout=DEFAULT_TIMEOUT_FOR_SERVER_LAUNCH, other_args=[ "--speculative-algorithm", "EAGLE", "--speculative-draft-model-path", DEFAULT_EAGLE_DRAFT_MODEL_FOR_TEST, "--speculative-num-steps", 1, "--speculative-eagle-topk", 1, "--speculative-num-draft-tokens", 2, "--max-running-requests", 4, "--attention-backend", "triton", ], ) cls.accept_len_threshold = 1.50 @unittest.skipIf(is_in_ci(), "To reduce the CI execution time.") class TestEAGLEDraftExtendFlashinferMLA(TestEAGLEDraftExtend): @classmethod def setUpClass(cls): cls.base_url = DEFAULT_URL_FOR_TEST cls.process = popen_launch_server( DEFAULT_MODEL_NAME_FOR_TEST_MLA, cls.base_url, timeout=DEFAULT_TIMEOUT_FOR_SERVER_LAUNCH, other_args=[ "--speculative-algorithm", "EAGLE", "--speculative-num-steps", 1, "--speculative-eagle-topk", 1, "--speculative-num-draft-tokens", 2, "--max-running-requests", 4, "--attention-backend", "flashinfer", ], ) cls.accept_len_threshold = 1.85 if __name__ == "__main__": unittest.main()