import math import torch precision = { torch.bfloat16: 1e-2, torch.float16: 1e-3, torch.float32: 1e-5, } def per_token_quant_int8(x): x = x.float() absmax = x.abs().max(dim=-1).values absmax = absmax.clamp_min(1e-10).unsqueeze(-1) scale_x = absmax / 127 x_q = x.mul(127 / absmax) x_q = torch.round(x_q).to(torch.int8) return x_q, scale_x def convert_weight(weight, scale_block_size, A_dtype): N, K = weight.size() fp8_max = 448.0 scale_block_size_N, scale_block_size_K = scale_block_size # (128, 128) pad_N = (scale_block_size_N - (N % scale_block_size_N)) % scale_block_size_N pad_K = (scale_block_size_K - (K % scale_block_size_K)) % scale_block_size_K if pad_N > 0 or pad_K > 0: weight = torch.nn.functional.pad(weight, (0, pad_K, 0, pad_N)) weight_blocks = weight.view( math.ceil(N / scale_block_size_N), scale_block_size_N, math.ceil(K / scale_block_size_K), scale_block_size_K, ) # (8, 128, 8, 128) weight_blocks = weight_blocks.permute(0, 2, 1, 3).contiguous() # (8, 8, 128, 128) # Step 2: compute per-block max abs values → scale abs_max = weight_blocks.abs().amax(dim=(-2, -1), keepdim=True) # (8, 8, 1, 1) scales = abs_max / fp8_max scales = torch.where( scales == 0, torch.ones_like(scales), scales ) # avoid division by zero q_fp8 = (weight_blocks / scales).to(torch.float8_e4m3fn) q_fp8_reshape = q_fp8.permute(0, 2, 1, 3).contiguous() if pad_N > 0 or pad_K > 0: q_fp8_reshape = q_fp8_reshape.view(N + pad_N, K + pad_K) q_fp8_reshape = q_fp8_reshape[:N, :K].contiguous() else: q_fp8_reshape = q_fp8_reshape.view(N, K) dq_weight = q_fp8.float() * scales dq_weight = dq_weight.permute(0, 2, 1, 3).contiguous() # (8, 128, 8, 128) if pad_N > 0 or pad_K > 0: w_dq = dq_weight.view(N + pad_N, K + pad_K).to(A_dtype) w_dq = w_dq[:N, :K].contiguous() else: w_dq = dq_weight.view(N, K).to(A_dtype) scales = scales.view( math.ceil(N / scale_block_size_N), math.ceil(K / scale_block_size_K) ) return q_fp8_reshape, scales, w_dq def native_w8a8_per_token_matmul(A, B, As, Bs, bias, output_dtype=torch.bfloat16): """Matrix multiplication function that supports per-token input quantization and per-column weight quantization""" A = A.to(torch.float32) B = B.to(torch.float32) assert A.shape[-1] == B.shape[-1], "Dimension mismatch" assert B.ndim == 2 and B.is_contiguous(), "B must be a 2D contiguous tensor" # Reshape input M = A.numel() // A.shape[-1] B = B.t() # Transpose weight matrix N, K = B.shape origin_C_shape = A.shape[:-1] + (K,) A = A.reshape(M, N) # As is per-token [M, 1], Bs is per-column [1, K] C = torch.matmul(A, B) # [M, K] C = As * C * Bs.view(1, -1) # Broadcast per-column scale if bias is not None: C.add_(bias.view(1, -1)) return C.reshape(origin_C_shape).to(output_dtype)