# Install SGLang You can install SGLang using any of the methods below. ## Method 1: With pip ``` pip install --upgrade pip pip install "sglang[all]" --find-links https://flashinfer.ai/whl/cu121/torch2.4/flashinfer/ ``` Note: Please check the [FlashInfer installation doc](https://docs.flashinfer.ai/installation.html) to install the proper version according to your PyTorch and CUDA versions. ## Method 2: From source ``` # Use the last release branch git clone -b v0.4.0 https://github.com/sgl-project/sglang.git cd sglang pip install --upgrade pip pip install -e "python[all]" --find-links https://flashinfer.ai/whl/cu121/torch2.4/flashinfer/ ``` Note: Please check the [FlashInfer installation doc](https://docs.flashinfer.ai/installation.html) to install the proper version according to your PyTorch and CUDA versions. Note: To AMD ROCm system with Instinct/MI GPUs, do following instead: ``` # Use the last release branch git clone -b v0.4.0 https://github.com/sgl-project/sglang.git cd sglang pip install --upgrade pip pip install -e "python[all_hip]" ``` ## Method 3: Using docker The docker images are available on Docker Hub as [lmsysorg/sglang](https://hub.docker.com/r/lmsysorg/sglang/tags), built from [Dockerfile](https://github.com/sgl-project/sglang/tree/main/docker). Replace `` below with your huggingface hub [token](https://huggingface.co/docs/hub/en/security-tokens). ```bash docker run --gpus all \ --shm-size 32g \ -p 30000:30000 \ -v ~/.cache/huggingface:/root/.cache/huggingface \ --env "HF_TOKEN=" \ --ipc=host \ lmsysorg/sglang:latest \ python3 -m sglang.launch_server --model-path meta-llama/Llama-3.1-8B-Instruct --host 0.0.0.0 --port 30000 ``` Note: To AMD ROCm system with Instinct/MI GPUs, it is recommended to use `docker/Dockerfile.rocm` to build images, example and usage as below: ```bash docker build --build-arg SGL_BRANCH=v0.4.0 -t v0.4.0-rocm620 -f Dockerfile.rocm . alias drun='docker run -it --rm --network=host --device=/dev/kfd --device=/dev/dri --ipc=host \ --shm-size 16G --group-add video --cap-add=SYS_PTRACE --security-opt seccomp=unconfined \ -v $HOME/dockerx:/dockerx -v /data:/data' drun -p 30000:30000 \ -v ~/.cache/huggingface:/root/.cache/huggingface \ --env "HF_TOKEN=" \ v0.4.0-rocm620 \ python3 -m sglang.launch_server --model-path meta-llama/Llama-3.1-8B-Instruct --host 0.0.0.0 --port 30000 # Till flashinfer backend available, --attention-backend triton --sampling-backend pytorch are set by default drun v0.4.0-rocm620 python3 -m sglang.bench_one_batch --batch-size 32 --input 1024 --output 128 --model amd/Meta-Llama-3.1-8B-Instruct-FP8-KV --tp 8 --quantization fp8 ``` ## Method 4: Using docker compose
More > This method is recommended if you plan to serve it as a service. > A better approach is to use the [k8s-sglang-service.yaml](https://github.com/sgl-project/sglang/blob/main/docker/k8s-sglang-service.yaml). 1. Copy the [compose.yml](https://github.com/sgl-project/sglang/blob/main/docker/compose.yaml) to your local machine 2. Execute the command `docker compose up -d` in your terminal.
## Method 5: Run on Kubernetes or Clouds with SkyPilot
More To deploy on Kubernetes or 12+ clouds, you can use [SkyPilot](https://github.com/skypilot-org/skypilot). 1. Install SkyPilot and set up Kubernetes cluster or cloud access: see [SkyPilot's documentation](https://skypilot.readthedocs.io/en/latest/getting-started/installation.html). 2. Deploy on your own infra with a single command and get the HTTP API endpoint:
SkyPilot YAML: sglang.yaml ```yaml # sglang.yaml envs: HF_TOKEN: null resources: image_id: docker:lmsysorg/sglang:latest accelerators: A100 ports: 30000 run: | conda deactivate python3 -m sglang.launch_server \ --model-path meta-llama/Llama-3.1-8B-Instruct \ --host 0.0.0.0 \ --port 30000 ```
```bash # Deploy on any cloud or Kubernetes cluster. Use --cloud to select a specific cloud provider. HF_TOKEN= sky launch -c sglang --env HF_TOKEN sglang.yaml # Get the HTTP API endpoint sky status --endpoint 30000 sglang ``` 3. To further scale up your deployment with autoscaling and failure recovery, check out the [SkyServe + SGLang guide](https://github.com/skypilot-org/skypilot/tree/master/llm/sglang#serving-llama-2-with-sglang-for-more-traffic-using-skyserve).
## Common Notes - [FlashInfer](https://github.com/flashinfer-ai/flashinfer) is the default attention kernel backend. It only supports sm75 and above. If you encounter any FlashInfer-related issues on sm75+ devices (e.g., T4, A10, A100, L4, L40S, H100), please switch to other kernels by adding `--attention-backend triton --sampling-backend pytorch` and open an issue on GitHub. - If you only need to use OpenAI models with the frontend language, you can avoid installing other dependencies by using `pip install "sglang[openai]"`. - The language frontend operates independently of the backend runtime. You can install the frontend locally without needing a GPU, while the backend can be set up on a GPU-enabled machine. To install the frontend, run `pip install sglang`, and for the backend, use `pip install sglang[srt]`. This allows you to build SGLang programs locally and execute them by connecting to the remote backend.