""" Benchmark the latency of running a single static batch. This script does not launch a server and uses the low-level APIs. It accepts arguments similar to those of launch_server.py. # Usage (latency test) ## with dummy weights: python -m sglang.bench_latency --model-path meta-llama/Meta-Llama-3-8B-Instruct --load-format dummy ## sweep through multiple data points and store (append) the results in a jsonl file: python -m sglang.bench_latency --model-path meta-llama/Meta-Llama-3-8B-Instruct --batch 1 12 14 --input-len 256 512 --output-len 32 256 --result-filename out.jsonl ## do some changes, and store the results under a different run_name: python -m sglang.bench_latency --model-path meta-llama/Meta-Llama-3-8B-Instruct --batch 1 12 14 --input-len 256 512 --output-len 32 256 --result-filename out.jsonl --run-name after ## plot the results in series of lines: python -m sglang.bench_latency --result-filename out.jsonl --graph-sql="select run_name, batch_size, prefill_throughput from results" # Usage (correctness test): python -m sglang.bench_latency --model-path TinyLlama/TinyLlama-1.1B-Chat-v0.4 --correct ## Reference output (of the correctness test above, can be gpu dependent): input_ids=[[1, 450, 7483, 310, 3444, 338], [1, 450, 7483, 310, 278, 3303, 13187, 290, 338], [1, 20628, 338, 263, 6575, 1460, 2462, 322, 306, 763]] prefill logits (first half): tensor([[-10.0312, -9.5000, 0.8931, ..., -4.9414, -3.2422, -3.3633], [-10.0312, -9.5000, 0.8931, ..., -4.9414, -3.2422, -3.3633], [ -9.1875, -10.2500, 2.7129, ..., -4.3359, -4.0664, -4.1328]], device='cuda:0') prefill logits (final): tensor([[-8.3125, -7.1172, 3.3457, ..., -4.9570, -4.1328, -3.4141], [-8.9141, -9.0156, 4.1445, ..., -4.9922, -4.4961, -4.0781], [-9.6328, -9.0547, 4.0195, ..., -5.3047, -4.7148, -4.4570]], device='cuda:0') ========== Prompt 0 ========== The capital of France is Paris. The capital of the United States is Washington, D.C. ========== Prompt 1 ========== The capital of the United Kindom is London. The capital of the United Kingdom is London. The capital of the ========== Prompt 2 ========== Today is a sunny day and I like to go for a walk in the park. I'm going to the park """ import argparse import dataclasses import itertools import logging import multiprocessing import os import sqlite3 import time from typing import Tuple import numpy as np import pandas as pd import torch import torch.distributed as dist from sglang.srt.configs.model_config import ModelConfig from sglang.srt.hf_transformers_utils import get_tokenizer from sglang.srt.managers.schedule_batch import Req, ScheduleBatch from sglang.srt.model_executor.model_runner import ModelRunner from sglang.srt.sampling.sampling_params import SamplingParams from sglang.srt.server import _set_envs_and_config from sglang.srt.server_args import ServerArgs from sglang.srt.utils import ( configure_logger, kill_child_process, suppress_other_loggers, ) @dataclasses.dataclass class BenchArgs: run_name: str = "before" batch_size: Tuple[int] = (1,) input_len: Tuple[int] = (1024,) output_len: Tuple[int] = (16,) result_filename: str = "" correctness_test: bool = False # This is only used for correctness test cut_len: int = 4 # Plotting args graph_sql: str = ( "select run_name, batch_size, prefill_throughput from results where run_name='before'" ) graph_filename: str = "out.png" @staticmethod def add_cli_args(parser: argparse.ArgumentParser): parser.add_argument("--run-name", type=str, default=BenchArgs.run_name) parser.add_argument( "--batch-size", type=int, nargs="+", default=BenchArgs.batch_size ) parser.add_argument( "--input-len", type=int, nargs="+", default=BenchArgs.input_len ) parser.add_argument( "--output-len", type=int, nargs="+", default=BenchArgs.output_len ) parser.add_argument( "--result-filename", type=str, default=BenchArgs.result_filename ) parser.add_argument("--correctness-test", action="store_true") parser.add_argument("--cut-len", type=int, default=BenchArgs.cut_len) # graphing parser.add_argument("--graph-sql", type=str, default=BenchArgs.graph_sql) parser.add_argument( "--graph-filename", type=str, default=BenchArgs.graph_filename ) @classmethod def from_cli_args(cls, args: argparse.Namespace): # use the default value's type to case the args into correct types. attrs = [(attr.name, type(attr.default)) for attr in dataclasses.fields(cls)] return cls( **{attr: attr_type(getattr(args, attr)) for attr, attr_type in attrs} ) def load_model(server_args, tp_rank): suppress_other_loggers() rank_print = print if tp_rank == 0 else lambda *args, **kwargs: None model_config = ModelConfig( server_args.model_path, server_args.trust_remote_code, context_length=server_args.context_length, ) model_runner = ModelRunner( model_config=model_config, mem_fraction_static=server_args.mem_fraction_static, gpu_id=tp_rank, tp_rank=tp_rank, tp_size=server_args.tp_size, nccl_port=28888, server_args=server_args, ) rank_print(f"max_total_num_tokens={model_runner.max_total_num_tokens}") tokenizer = get_tokenizer( server_args.tokenizer_path, tokenizer_mode=server_args.tokenizer_mode, trust_remote_code=server_args.trust_remote_code, ) if server_args.tp_size > 1: dist.barrier() return model_runner, tokenizer def prepare_inputs_for_correctness_test(bench_args, tokenizer): prompts = [ "The capital of France is", "The capital of the United Kindom is", "Today is a sunny day and I like", ] input_ids = [tokenizer.encode(p) for p in prompts] sampling_params = SamplingParams( temperature=0, max_new_tokens=BenchArgs.output_len, ) reqs = [] for i in range(len(prompts)): assert len(input_ids[i]) > bench_args.cut_len tmp_input_ids = input_ids[i][: bench_args.cut_len] req = Req( rid=i, origin_input_text=prompts[i], origin_input_ids=tmp_input_ids, sampling_params=sampling_params, ) req.prefix_indices = [] req.fill_ids = req.origin_input_ids req.extend_input_len = len(req.fill_ids) - len(req.prefix_indices) reqs.append(req) return input_ids, reqs def prepare_extend_inputs_for_correctness_test( bench_args, input_ids, reqs, model_runner ): for i in range(len(reqs)): req = reqs[i] req.fill_ids += input_ids[i][bench_args.cut_len :] req.prefix_indices = model_runner.req_to_token_pool.req_to_token[ i, : bench_args.cut_len ] req.extend_input_len = len(req.fill_ids) - len(req.prefix_indices) return reqs def prepare_synthetic_inputs_for_latency_test(batch_size, input_len): input_ids = np.ones((batch_size, input_len), dtype=np.int32) sampling_params = SamplingParams( temperature=0, max_new_tokens=BenchArgs.output_len, ) reqs = [] for i in range(len(input_ids)): req = Req( rid=i, origin_input_text="", origin_input_ids=list(input_ids[i]), sampling_params=sampling_params, ) req.prefix_indices = [] req.fill_ids = req.origin_input_ids req.extend_input_len = len(req.fill_ids) - len(req.prefix_indices) reqs.append(req) return reqs def extend(reqs, model_runner): batch = ScheduleBatch.init_new( reqs=reqs, req_to_token_pool=model_runner.req_to_token_pool, token_to_kv_pool=model_runner.token_to_kv_pool, tree_cache=None, ) batch.prepare_for_extend(model_runner.model_config.vocab_size) logits_output = model_runner.forward(batch) next_token_ids = model_runner.sample(logits_output, batch).tolist() return next_token_ids, logits_output.next_token_logits, batch def decode(input_token_ids, batch, model_runner): batch.prepare_for_decode(input_token_ids) logits_output = model_runner.forward(batch) next_token_ids = model_runner.sample(logits_output, batch).tolist() return next_token_ids, logits_output.next_token_logits @torch.inference_mode() def correctness_test( server_args, bench_args, tp_rank, ): rank_print = print if tp_rank == 0 else lambda *args, **kwargs: None # Load the model model_runner, tokenizer = load_model(server_args, tp_rank) # Prepare inputs input_ids, reqs = prepare_inputs_for_correctness_test(bench_args, tokenizer) rank_print(f"\n{input_ids=}\n") if bench_args.cut_len > 0: # Prefill next_token_ids, next_token_logits, batch = extend(reqs, model_runner) rank_print(f"prefill logits (first half): {next_token_logits} \n") # Prepare extend inputs reqs = prepare_extend_inputs_for_correctness_test( bench_args, input_ids, reqs, model_runner ) # Extend next_token_ids, next_token_logits, batch = extend(reqs, model_runner) rank_print(f"prefill logits (final): {next_token_logits} \n") # Decode output_ids = [input_ids[i] + [next_token_ids[i]] for i in range(len(input_ids))] for _ in range(bench_args.output_len[0] - 1): next_token_ids, _ = decode(next_token_ids, batch, model_runner) for i in range(len(reqs)): output_ids[i].append(next_token_ids[i]) # Print for i in range(len(reqs)): rank_print(f"========== Prompt {i} ==========") rank_print(tokenizer.decode(output_ids[i]), "\n") @torch.inference_mode() def latency_test_run_once( run_name, model_runner, rank_print, reqs, batch_size, input_len, output_len ): max_batch_size = model_runner.max_total_num_tokens // (input_len + output_len) if batch_size > max_batch_size: rank_print( f"skipping ({batch_size}, {input_len}, {output_len}) due to max batch size limit" ) return # Clear the pools. model_runner.req_to_token_pool.clear() model_runner.token_to_kv_pool.clear() measurement_results = { "run_name": run_name, "batch_size": batch_size, "input_len": input_len, "output_len": output_len, } tot_latency = 0 # Prefill torch.cuda.synchronize() tic = time.time() next_token_ids, _, batch = extend(reqs, model_runner) torch.cuda.synchronize() prefill_latency = time.time() - tic tot_latency += prefill_latency throughput = input_len * batch_size / prefill_latency rank_print( f"Prefill. latency: {prefill_latency:6.5f} s, throughput: {throughput:9.2f} token/s" ) measurement_results["prefill_latency"] = prefill_latency measurement_results["prefill_throughput"] = throughput # Decode decode_latencies = [] for i in range(output_len - 1): torch.cuda.synchronize() tic = time.time() next_token_ids, _ = decode(next_token_ids, batch, model_runner) torch.cuda.synchronize() latency = time.time() - tic tot_latency += latency throughput = batch_size / latency decode_latencies.append(latency) if i < 5: rank_print( f"Decode. latency: {latency:6.5f} s, throughput: {throughput:9.2f} token/s" ) med_decode_latency = np.median(decode_latencies) med_decode_throughput = batch_size / med_decode_latency rank_print( f"Decode. median latency: {med_decode_latency:6.5f} s, median throughput: {med_decode_throughput:9.2f} token/s" ) measurement_results["median_decode_latency"] = med_decode_latency measurement_results["median_decode_throughput"] = med_decode_throughput throughput = (input_len + output_len) * batch_size / tot_latency rank_print( f"Total. latency: {tot_latency:6.3f} s, throughput: {throughput:9.2f} token/s" ) measurement_results["total_latency"] = tot_latency measurement_results["total_throughput"] = throughput return measurement_results def latency_test( server_args, bench_args, tp_rank, ): configure_logger(server_args, prefix=f" TP{tp_rank}") _set_envs_and_config(server_args) rank_print = print if tp_rank == 0 else lambda *args, **kwargs: None # Load the model model_runner, tokenizer = load_model(server_args, tp_rank) # Prepare inputs for warm up reqs = prepare_synthetic_inputs_for_latency_test( bench_args.batch_size[0], bench_args.input_len[0] ) # Warm up rank_print("Warmup ...") latency_test_run_once( bench_args.run_name, model_runner, rank_print, reqs, bench_args.batch_size[0], bench_args.input_len[0], 4, # shorter decoding to speed up the warmup ) rank_print("Benchmark ...") # Run the sweep result_list = [] for bs, il, ol in itertools.product( bench_args.batch_size, bench_args.input_len, bench_args.output_len ): reqs = prepare_synthetic_inputs_for_latency_test(bs, il) ret = latency_test_run_once( bench_args.run_name, model_runner, rank_print, reqs, bs, il, ol ) if ret is not None: result_list.append(ret) # Write results in jsonlines format on rank 0. if tp_rank == 0 and bench_args.result_filename: import jsonlines with jsonlines.open(bench_args.result_filename, "a") as f: f.write_all(result_list) def plot_latency_test( server_args, bench_args, tp_rank, ): assert tp_rank == 0 # read the jsonl file and put in sqlite df = pd.read_json(bench_args.result_filename, lines=True) conn = sqlite3.connect(":memory:") cur = conn.cursor() # get the columns and their types column_names = list(df.iloc[0].keys()) type_dict = { str: "TEXT", np.int64: "INTEGER", np.float64: "FLOAT", } column_types = [type_dict[type(i)] for i in list(df.iloc[0])] # create the table cur.execute( f""" CREATE TABLE IF NOT EXISTS results ( {", ".join([f"{name} {type}" for name, type in zip(column_names, column_types)])} ) """ ) conn.commit() # write the results to DB df.to_sql("results", conn, if_exists="replace", index=False) conn.commit() # read it back using sql df = pd.read_sql_query(bench_args.graph_sql, conn) conn.close() # plot it and save to a file import matplotlib.pyplot as plt assert ( len(df.columns) == 3 ), f"The sql should have fetched columns, not {df.columns}" for label in df[df.columns[0]].unique(): q = f"{df.columns[0]}=='{label}'" series = df.query(q) plt.plot(series[df.columns[1]], series[df.columns[2]], label=q, marker="o") plt.xlabel(df.columns[1]) plt.ylabel(df.columns[2]) plt.legend() plt.savefig(bench_args.graph_filename, dpi=300) # if in kitty, just dump it to the terminal if os.environ["TERM"] == "xterm-kitty": os.system( f"kitty icat --use-window-size 1,1,600,600 {bench_args.graph_filename}" ) def main(server_args, bench_args): if server_args.model_path: if bench_args.correctness_test: work_func = correctness_test else: work_func = latency_test elif os.path.isfile(bench_args.result_filename): assert bench_args.graph_filename, "please provide a filename for the graph" work_func = plot_latency_test else: raise ValueError( "Provide --model-path for running the tests or " "provide --result-filename for plotting the results" ) if server_args.tp_size == 1: work_func(server_args, bench_args, 0) else: workers = [] for tp_rank in range(server_args.tp_size): proc = multiprocessing.Process( target=work_func, args=( server_args, bench_args, tp_rank, ), ) proc.start() workers.append(proc) for proc in workers: proc.join() proc.terminate() if __name__ == "__main__": parser = argparse.ArgumentParser() ServerArgs.add_cli_args(parser) BenchArgs.add_cli_args(parser) args = parser.parse_args() server_args = ServerArgs.from_cli_args(args) bench_args = BenchArgs.from_cli_args(args) logging.basicConfig( level=getattr(logging, server_args.log_level.upper()), format="%(message)s", ) multiprocessing.set_start_method("spawn", force=True) try: main(server_args, bench_args) except Exception as e: raise e finally: kill_child_process(os.getpid(), including_parent=False)