import torch from sgl_kernel import sampling_scaling_penalties def test_sampling_scaling_penalties(): batch_sizes = [1, 2, 4, 8, 16, 32, 64, 65] vocab_sizes = [2048, 4096, 8192, 16384, 32768, 32767] dtypes = [torch.float32, torch.half, torch.bfloat16] device = torch.device("cuda") for dtype in dtypes: rtol = 1e-3 atol = 1e-3 for bs in batch_sizes: for vocab_size in vocab_sizes: logits = torch.randn(bs, vocab_size, device=device, dtype=dtype) scaling_penalties = ( torch.rand(bs, vocab_size, device=device, dtype=dtype) + 0.5 ) ref_output = torch.where( logits > 0, logits / scaling_penalties, logits * scaling_penalties ) kernel_output = sampling_scaling_penalties(logits, scaling_penalties) torch.testing.assert_close( kernel_output, ref_output, rtol=rtol, atol=atol, msg=f"Failed for batch_size={bs}, vocab_size={vocab_size}, dtype={dtype}", ) if __name__ == "__main__": test_sampling_scaling_penalties() print("All tests passed!")