import pytest import torch from sgl_kernel import sampling_scaling_penalties @pytest.mark.parametrize("batch_size", [1, 2, 4, 8, 16, 32, 64, 65]) @pytest.mark.parametrize("vocab_size", [2048, 4096, 8192, 16384, 32768, 32767]) @pytest.mark.parametrize("dtype", [torch.half, torch.bfloat16]) def test_sampling_scaling_penalties(batch_size, vocab_size, dtype): device = torch.device("cuda") rtol = 1e-3 atol = 1e-3 logits = torch.randn(batch_size, vocab_size, device=device, dtype=dtype) scaling_penalties = ( torch.rand(batch_size, vocab_size, device=device, dtype=dtype) + 0.5 ) ref_output = torch.where( logits > 0, logits / scaling_penalties, logits * scaling_penalties ) kernel_output = sampling_scaling_penalties(logits, scaling_penalties) torch.testing.assert_close( kernel_output, ref_output, rtol=rtol, atol=atol, msg=f"Failed for batch_size={batch_size}, vocab_size={vocab_size}, dtype={dtype}", ) if __name__ == "__main__": pytest.main([__file__])