# Benchmark and Profiling ## Benchmark - Benchmark the latency of running a single static batch without a server. The arguments are the same as for `launch_server.py`. Note that this is a simplified test script without a dynamic batching server, so it may run out of memory for a batch size that a real server can handle. A real server truncates the prefill into several batches, while this simplified script does not. ``` python -m sglang.bench_one_batch --model-path meta-llama/Meta-Llama-3.1-8B-Instruct --batch 32 --input-len 256 --output-len 32 ``` - Benchmark offline processing. This script will start an offline engine and run the benchmark. ``` python3 -m sglang.bench_offline_throughput --model-path meta-llama/Meta-Llama-3.1-8B-Instruct --num-prompts 10 ``` - Benchmark online serving. Please use `sglang.launch_server` to launch a server first and run the following command. ``` python3 -m sglang.bench_serving --backend sglang --num-prompt 10 ``` ## Profile with Nsight 0. Prerequisite ```bash # install nsys # https://docs.nvidia.com/nsight-systems/InstallationGuide/index.html apt update apt install -y --no-install-recommends gnupg echo "deb http://developer.download.nvidia.com/devtools/repos/ubuntu$(source /etc/lsb-release; echo "$DISTRIB_RELEASE" | tr -d .)/$(dpkg --print-architecture) /" | tee /etc/apt/sources.list.d/nvidia-devtools.list apt-key adv --fetch-keys http://developer.download.nvidia.com/compute/cuda/repos/ubuntu1804/x86_64/7fa2af80.pub apt update apt install nsight-systems-cli ``` 1. To profile a single batch, use `nsys profile --trace-fork-before-exec=true --cuda-graph-trace=node python3 -m sglang.bench_one_batch --model meta-llama/Meta-Llama-3-8B --batch-size 64 --input-len 512` 2. To profile a server, e.g. ```bash # server # set the delay and duration times according to needs nsys profile --trace-fork-before-exec=true --cuda-graph-trace=node -o sglang.out --delay 60 --duration 70 python3 -m sglang.launch_server --model-path meta-llama/Llama-3.1-8B-Instruct --disable-radix-cache # client python3 -m sglang.bench_serving --backend sglang --num-prompts 1000 --dataset-name random --random-input 1024 --random-output 512 ``` 3. Use NVTX, e.g. ```bash # install nvtx pip install nvtx # code snippets import nvtx with nvtx.annotate("description", color="color"): # some critical code ``` ## Other tips 1. You can benchmark a model using dummy weights by only providing the config.json file. This allows for quick testing of model variants without training. To do so, add `--load-format dummy` to the above commands and then you only need a correct `config.json` under the checkpoint folder.