import multiprocessing as mp
import random
import threading
import time
import unittest
from types import SimpleNamespace
import requests
import sglang as sgl
from sglang.srt.hf_transformers_utils import get_tokenizer
from sglang.srt.utils import kill_process_tree
from sglang.test.few_shot_gsm8k import run_eval
from sglang.test.test_utils import (
DEFAULT_EAGLE_DRAFT_MODEL_FOR_TEST,
DEFAULT_EAGLE_TARGET_MODEL_FOR_TEST,
DEFAULT_TIMEOUT_FOR_SERVER_LAUNCH,
DEFAULT_URL_FOR_TEST,
popen_launch_server,
)
acc_rate_tolerance = 0.15
class TestEAGLEEngine(unittest.TestCase):
BASE_CONFIG = {
"model_path": DEFAULT_EAGLE_TARGET_MODEL_FOR_TEST,
"speculative_draft_model_path": DEFAULT_EAGLE_DRAFT_MODEL_FOR_TEST,
"speculative_algorithm": "EAGLE",
"speculative_num_steps": 5,
"speculative_eagle_topk": 8,
"speculative_num_draft_tokens": 64,
"mem_fraction_static": 0.7,
"cuda_graph_max_bs": 32,
}
def setUp(self):
self.prompt = "Today is a sunny day and I like"
self.sampling_params = {"temperature": 0, "max_new_tokens": 8}
ref_engine = sgl.Engine(model_path=DEFAULT_EAGLE_TARGET_MODEL_FOR_TEST)
self.ref_output = ref_engine.generate(self.prompt, self.sampling_params)["text"]
ref_engine.shutdown()
def test_correctness(self):
configs = [
self.BASE_CONFIG,
{**self.BASE_CONFIG, "disable_cuda_graph": True},
{**self.BASE_CONFIG, "chunked_prefill_size": 2},
]
for config in configs:
with self.subTest(
cuda_graph=(
"enabled" if len(config) == len(self.BASE_CONFIG) else "disabled"
),
chunked_prefill_size=(
config["chunked_prefill_size"]
if "chunked_prefill_size" in config
else "default"
),
):
engine = sgl.Engine(**config)
try:
self._test_basic_generation(engine)
self._test_eos_token(engine)
self._test_batch_generation(engine)
finally:
engine.shutdown()
def _test_basic_generation(self, engine):
output = engine.generate(self.prompt, self.sampling_params)["text"]
print(f"{output=}, {self.ref_output=}")
self.assertEqual(output, self.ref_output)
def _test_eos_token(self, engine):
prompt = "[INST] <>\nYou are a helpful assistant.\n<>\nToday is a sunny day and I like [/INST]"
params = {
"temperature": 0,
"max_new_tokens": 1024,
"skip_special_tokens": False,
}
tokenizer = get_tokenizer(DEFAULT_EAGLE_TARGET_MODEL_FOR_TEST)
output = engine.generate(prompt, params)["text"]
print(f"{output=}")
tokens = tokenizer.encode(output, truncation=False)
self.assertNotIn(tokenizer.eos_token_id, tokens)
def _test_batch_generation(self, engine):
prompts = [
"Hello, my name is",
"The president of the United States is",
"The capital of France is",
"The future of AI is",
]
params = {"temperature": 0, "max_new_tokens": 30}
outputs = engine.generate(prompts, params)
for prompt, output in zip(prompts, outputs):
print(f"Prompt: {prompt}")
print(f"Generated: {output['text']}")
print("-" * 40)
prompts = [
"[INST] <>\\nYou are a helpful assistant.\\n<>\\nToday is a sunny day and I like[/INST]"
'[INST] <>\\nYou are a helpful assistant.\\n<>\\nWhat are the mental triggers in Jeff Walker\'s Product Launch Formula and "Launch" book?[/INST]',
"[INST] <>\\nYou are a helpful assistant.\\n<>\\nSummarize Russell Brunson's Perfect Webinar Script...[/INST]",
"[INST] <>\\nYou are a helpful assistant.\\n<>\\nwho are you?[/INST]",
"[INST] <>\\nYou are a helpful assistant.\\n<>\\nwhere are you from?[/INST]",
]
class TestEAGLEServer(unittest.TestCase):
@classmethod
def setUpClass(cls):
cls.base_url = DEFAULT_URL_FOR_TEST
cls.process = popen_launch_server(
DEFAULT_EAGLE_TARGET_MODEL_FOR_TEST,
cls.base_url,
timeout=DEFAULT_TIMEOUT_FOR_SERVER_LAUNCH,
other_args=[
"--speculative-algorithm",
"EAGLE",
"--speculative-draft-model-path",
DEFAULT_EAGLE_DRAFT_MODEL_FOR_TEST,
"--speculative-num-steps",
"5",
"--speculative-eagle-topk",
"8",
"--speculative-num-draft-tokens",
"64",
"--mem-fraction-static",
"0.7",
"--chunked-prefill-size",
"128",
"--cuda-graph-max-bs",
"32",
],
)
@classmethod
def tearDownClass(cls):
kill_process_tree(cls.process.pid)
def send_request(self):
time.sleep(random.uniform(0, 2))
for prompt in prompts:
url = self.base_url + "/generate"
data = {
"text": prompt,
"sampling_params": {
"temperature": 0,
"max_new_tokens": 1024,
},
}
response = requests.post(url, json=data)
assert response.status_code == 200
def send_requests_abort(self):
for prompt in prompts:
try:
time.sleep(random.uniform(0, 2))
url = self.base_url + "/generate"
data = {
"model": "base",
"text": prompt,
"sampling_params": {
"temperature": 0,
"max_new_tokens": 1024,
},
}
# set timeout = 1s, mock disconnected
requests.post(url, json=data, timeout=1)
except Exception as e:
print(e)
pass
def test_request_abort(self):
concurrency = 4
threads = [
threading.Thread(target=self.send_request) for _ in range(concurrency)
] + [
threading.Thread(target=self.send_requests_abort)
for _ in range(concurrency)
]
for worker in threads:
worker.start()
for p in threads:
p.join()
def test_gsm8k(self):
args = SimpleNamespace(
num_shots=5,
data_path=None,
num_questions=200,
max_new_tokens=512,
parallel=128,
host="http://127.0.0.1",
port=int(self.base_url.split(":")[-1]),
)
metrics = run_eval(args)
print(f"{metrics=}")
self.assertGreater(metrics["accuracy"], 0.20)
def measure_acc_rate(engine):
tic = time.time()
prompt = [
"Human: Give me a fully functional FastAPI server. Show the python code.<|separator|>\n\nAssistant:"
]
sampling_params = {"temperature": 0, "max_new_tokens": 512}
output = engine.generate(prompt, sampling_params)
output = output[0]
latency = time.time() - tic
if "spec_verify_ct" in output["meta_info"]:
base_acc_length = (
output["meta_info"]["completion_tokens"]
/ output["meta_info"]["spec_verify_ct"]
)
else:
base_acc_length = 0.0
base_speed = output["meta_info"]["completion_tokens"] / latency
return base_acc_length, base_speed
class TestEagleAcceptanceRate(unittest.TestCase):
@classmethod
def setUpClass(cls):
mp.set_start_method("spawn", force=True)
ref_engine = sgl.Engine(
model_path=DEFAULT_EAGLE_TARGET_MODEL_FOR_TEST,
speculative_draft_model_path=DEFAULT_EAGLE_DRAFT_MODEL_FOR_TEST,
speculative_algorithm="EAGLE",
speculative_num_steps=5,
speculative_eagle_topk=8,
speculative_num_draft_tokens=64,
mem_fraction_static=0.7,
disable_radix_cache=True,
)
cls.base_acc_length, cls.base_speed = measure_acc_rate(ref_engine)
ref_engine.shutdown()
assert cls.base_acc_length > 4.45
def test_acc_rate(self):
base_acc_length, base_speed = self.base_acc_length, self.base_speed
chunk_engine = sgl.Engine(
model_path=DEFAULT_EAGLE_TARGET_MODEL_FOR_TEST,
speculative_draft_model_path=DEFAULT_EAGLE_DRAFT_MODEL_FOR_TEST,
speculative_algorithm="EAGLE",
speculative_num_steps=5,
speculative_eagle_topk=8,
speculative_num_draft_tokens=64,
mem_fraction_static=0.7,
chunked_prefill_size=2,
disable_radix_cache=True,
)
chunked_acc_length, chunked_base_speed = measure_acc_rate(chunk_engine)
chunk_engine.shutdown()
print(base_acc_length, base_speed)
print(chunked_acc_length, chunked_base_speed)
assert abs(base_acc_length - chunked_acc_length) < acc_rate_tolerance
def test_acc_rate_prefix_caching(self):
base_acc_length, base_speed = self.base_acc_length, self.base_speed
prefix_caching_engine = sgl.Engine(
model_path=DEFAULT_EAGLE_TARGET_MODEL_FOR_TEST,
speculative_draft_model_path=DEFAULT_EAGLE_DRAFT_MODEL_FOR_TEST,
speculative_algorithm="EAGLE",
speculative_num_steps=5,
speculative_eagle_topk=8,
speculative_num_draft_tokens=64,
mem_fraction_static=0.7,
chunked_prefill_size=4,
schedule_policy="lpm",
)
for _ in range(10):
acc_length, _ = measure_acc_rate(prefix_caching_engine)
print(f"{acc_length=}")
assert abs(base_acc_length - acc_length) < acc_rate_tolerance
# The second one should hit the prefix cache.
prefix_caching_engine.shutdown()
class TestEAGLERetract(unittest.TestCase):
@classmethod
def setUpClass(cls):
cls.base_url = DEFAULT_URL_FOR_TEST
cls.process = popen_launch_server(
DEFAULT_EAGLE_TARGET_MODEL_FOR_TEST,
cls.base_url,
timeout=DEFAULT_TIMEOUT_FOR_SERVER_LAUNCH,
other_args=[
"--speculative-algorithm",
"EAGLE",
"--speculative-draft-model-path",
DEFAULT_EAGLE_DRAFT_MODEL_FOR_TEST,
"--speculative-num-steps",
"5",
"--speculative-eagle-topk",
"8",
"--speculative-num-draft-tokens",
"64",
"--mem-fraction-static",
"0.7",
"--chunked-prefill-size",
"128",
"--max-running-requests",
"64",
],
)
@classmethod
def tearDownClass(cls):
kill_process_tree(cls.process.pid)
def test_gsm8k(self):
args = SimpleNamespace(
num_shots=5,
data_path=None,
num_questions=200,
max_new_tokens=512,
parallel=128,
host="http://127.0.0.1",
port=int(self.base_url.split(":")[-1]),
)
metrics = run_eval(args)
print(f"{metrics=}")
self.assertGreater(metrics["accuracy"], 0.20)
# Wait a little bit so that the memory check happens.
time.sleep(5)
class TestEAGLEServerTriton(TestEAGLEServer):
@classmethod
def setUpClass(cls):
cls.base_url = DEFAULT_URL_FOR_TEST
cls.process = popen_launch_server(
DEFAULT_EAGLE_TARGET_MODEL_FOR_TEST,
cls.base_url,
timeout=DEFAULT_TIMEOUT_FOR_SERVER_LAUNCH,
other_args=[
"--speculative-algorithm",
"EAGLE",
"--speculative-draft-model-path",
DEFAULT_EAGLE_DRAFT_MODEL_FOR_TEST,
"--speculative-num-steps",
"5",
"--speculative-eagle-topk",
"4",
"--speculative-num-draft-tokens",
"8",
"--mem-fraction-static",
"0.7",
"--attention-backend",
"triton",
"--cuda-graph-max-bs",
"16",
],
)
class TestEAGLEEngineTokenMap(unittest.TestCase):
def setUp(self):
self.prompt = "Today is a sunny day and I like"
self.sampling_params = {"temperature": 0, "max_new_tokens": 8}
ref_engine = sgl.Engine(
model_path="meta-llama/Meta-Llama-3-8B-Instruct", cuda_graph_max_bs=2
)
self.ref_output = ref_engine.generate(self.prompt, self.sampling_params)["text"]
ref_engine.shutdown()
def test_correctness(self):
config = {
"model_path": "meta-llama/Meta-Llama-3-8B-Instruct",
"speculative_draft_model_path": "lmsys/sglang-EAGLE-LLaMA3-Instruct-8B",
"speculative_algorithm": "EAGLE",
"speculative_num_steps": 5,
"speculative_eagle_topk": 4,
"speculative_num_draft_tokens": 8,
"speculative_token_map": "thunlp/LLaMA3-Instruct-8B-FR-Spec/freq_32768.pt",
"mem_fraction_static": 0.7,
"cuda_graph_max_bs": 4,
"dtype": "bfloat16",
}
engine = sgl.Engine(**config)
try:
self._test_basic_generation(engine)
self._test_batch_generation(engine)
finally:
engine.shutdown()
def _test_basic_generation(self, engine):
output = engine.generate(self.prompt, self.sampling_params)["text"]
print(f"{output=}, {self.ref_output=}")
self.assertEqual(output, self.ref_output)
def _test_batch_generation(self, engine):
prompts = [
"Hello, my name is",
"The president of the United States is",
"The capital of France is",
"The future of AI is",
]
params = {"temperature": 0, "max_new_tokens": 30}
outputs = engine.generate(prompts, params)
for prompt, output in zip(prompts, outputs):
print(f"Prompt: {prompt}")
print(f"Generated: {output['text']}")
print("-" * 40)
if __name__ == "__main__":
unittest.main()