# Quantization SGLang supports various quantization methods, including offline quantization and online dynamic quantization. Offline quantization loads pre-quantized model weights directly during inference. This is required for quantization methods such as GPTQ and AWQ, which collect and pre-compute various statistics from the original weights using the calibration dataset. Online quantization dynamically computes scaling parameters—such as the maximum/minimum values of model weights—during runtime. Like NVIDIA FP8 training's [delayed scaling](https://docs.nvidia.com/deeplearning/transformer-engine/user-guide/examples/fp8_primer.html#Mixed-precision-training-with-FP8) mechanism, online quantization calculates the appropriate scaling factors on-the-fly to convert high-precision weights into a lower-precision format. **Note: For better performance, usability and convenience, offline quantization is recommended over online quantization.** If you use a pre-quantized model, do not add `--quantization` to enable online quantization at the same time. For popular pre-quantized models, please visit [ModelCloud](https://huggingface.co/collections/ModelCloud/vortex-673743382af0a52b2a8b9fe2) or [NeuralMagic](https://huggingface.co/collections/neuralmagic) collections on HF for some popular quality validated quantized models. Quantized models must be validated via benchmarks post-quantization to guard against abnormal quantization loss regressions. ## Offline Quantization To load already quantized models, simply load the model weights and config. **Again, if the model has been quantized offline, there's no need to add `--quantization` argument when starting the engine. The quantization method will be parsed from the downloaded Hugging Face config. For example, DeepSeek V3/R1 models are already in FP8, so do not add redundant parameters.** ```bash python3 -m sglang.launch_server \ --model-path hugging-quants/Meta-Llama-3.1-8B-Instruct-AWQ-INT4 \ --port 30000 --host 0.0.0.0 ``` Take note, if your model is **per-channel quantized (INT8 or FP8) with per-token dynamic quantization activation**, you can opt to include `--quantization w8a8_int8` or `--quantization w8a8_fp8` to invoke the corresponding CUTLASS int8_kernel or fp8_kernel in sgl-kernel. This action will ignore the Hugging Face config's quantization settings. For instance, with `neuralmagic/Meta-Llama-3.1-8B-Instruct-FP8-dynamic`, if you execute with `--quantization w8a8_fp8`, the system will use the `W8A8Fp8Config` from SGLang to invoke the sgl-kernel, rather than the `CompressedTensorsConfig` for vLLM kernels. ```bash python3 -m sglang.launch_server \ --model-path neuralmagic/Meta-Llama-3.1-8B-Instruct-FP8-dynamic \ --quantization w8a8_fp8 \ --port 30000 --host 0.0.0.0 ``` ### Examples of Offline Model Quantization #### Using [auto-round](https://github.com/intel/auto-round) ```bash # Install pip install auto-round ``` - LLM quantization ```py # for LLM from auto_round import AutoRound model_id = "meta-llama/Llama-3.2-1B-Instruct" quant_path = "Llama-3.2-1B-Instruct-autoround-4bit" # Scheme examples: "W2A16", "W3A16", "W4A16", "W8A16", "NVFP4", "MXFP4" (no real kernels), "GGUF:Q4_K_M", etc. scheme = "W4A16" format = "auto_round" autoround = AutoRound(model_id, scheme=scheme) autoround.quantize_and_save(quant_path, format=format) # quantize and save ``` - VLM quantization ```py # for VLMs from auto_round import AutoRoundMLLM model_name = "Qwen/Qwen2-VL-2B-Instruct" quant_path = "Qwen2-VL-2B-Instruct-autoround-4bit" scheme = "W4A16" format = "auto_round" autoround = AutoRoundMLLM(model_name, scheme) autoround.quantize_and_save(quant_path, format=format) # quantize and save ``` - Command Line Usage (Gaudi/CPU/Intel GPU/CUDA) ```bash auto-round \ --model meta-llama/Llama-3.2-1B-Instruct \ --bits 4 \ --group_size 128 \ --format "auto_round" \ --output_dir ./tmp_autoround ``` - known issues Several limitations currently affect offline quantized model loading in sglang, These issues might be resolved in future updates of sglang. If you experience any problems, consider using Hugging Face Transformers as an alternative. 1. Mixed-bit Quantization Limitations Mixed-bit quantization is not fully supported. Due to vLLM's layer fusion (e.g., QKV fusion), applying different bit-widths to components within the same fused layer can lead to compatibility issues. 2. Limited Support for Quantized MoE Models Quantized MoE models may encounter inference issues due to kernel limitations (e.g., lack of support for mlp.gate layer quantization). please try to skip quantizing these layers to avoid such errors. 3. Limited Support for Quantized VLMs
VLM failure cases Qwen2.5-VL-7B auto_round:auto_gptq format: Accuracy is close to zero. GPTQ format: Fails with: ``` The output size is not aligned with the quantized weight shape ``` auto_round:auto_awq and AWQ format: These work as expected.
#### Using [GPTQModel](https://github.com/ModelCloud/GPTQModel) ```bash # install pip install gptqmodel --no-build-isolation -v ``` ```py from datasets import load_dataset from gptqmodel import GPTQModel, QuantizeConfig model_id = "meta-llama/Llama-3.2-1B-Instruct" quant_path = "Llama-3.2-1B-Instruct-gptqmodel-4bit" calibration_dataset = load_dataset( "allenai/c4", data_files="en/c4-train.00001-of-01024.json.gz", split="train" ).select(range(1024))["text"] quant_config = QuantizeConfig(bits=4, group_size=128) # quantization config model = GPTQModel.load(model_id, quant_config) # load model model.quantize(calibration_dataset, batch_size=2) # quantize model.save(quant_path) # save model ``` #### Using [LLM Compressor](https://github.com/vllm-project/llm-compressor/) ```bash # install pip install llmcompressor ``` Here, we take quantize `meta-llama/Meta-Llama-3-8B-Instruct` to `FP8` as an example to elaborate on how to do offline quantization. ```python from transformers import AutoTokenizer from llmcompressor.transformers import SparseAutoModelForCausalLM from llmcompressor.transformers import oneshot from llmcompressor.modifiers.quantization import QuantizationModifier # Step 1: Load the original model. MODEL_ID = "meta-llama/Meta-Llama-3-8B-Instruct" model = SparseAutoModelForCausalLM.from_pretrained( MODEL_ID, device_map="auto", torch_dtype="auto") tokenizer = AutoTokenizer.from_pretrained(MODEL_ID) # Step 2: Perform offline quantization. # Step 2.1: Configure the simple PTQ quantization. recipe = QuantizationModifier( targets="Linear", scheme="FP8_DYNAMIC", ignore=["lm_head"]) # Step 2.2: Apply the quantization algorithm. oneshot(model=model, recipe=recipe) # Step 3: Save the model. SAVE_DIR = MODEL_ID.split("/")[1] + "-FP8-Dynamic" model.save_pretrained(SAVE_DIR) tokenizer.save_pretrained(SAVE_DIR) ``` Then, you can directly use the quantized model with `SGLang`, by using the following command: ```bash python3 -m sglang.launch_server \ --model-path $PWD/Meta-Llama-3-8B-Instruct-FP8-Dynamic \ --port 30000 --host 0.0.0.0 ``` #### Using [NVIDIA ModelOpt](https://github.com/NVIDIA/TensorRT-Model-Optimizer) NVIDIA Model Optimizer (ModelOpt) provides advanced quantization techniques optimized for NVIDIA hardware. SGLang includes a streamlined workflow for quantizing models with ModelOpt and automatically exporting them for deployment. ##### Installation First, install ModelOpt. You can either install it directly or as an optional SGLang dependency: ```bash # Option 1: Install ModelOpt directly pip install nvidia-modelopt # Option 2: Install SGLang with ModelOpt support (recommended) pip install sglang[modelopt] ``` ##### Quantization and Export Workflow SGLang provides an example script that demonstrates the complete ModelOpt quantization and export workflow: ```bash # Quantize and export a model using ModelOpt FP8 quantization python examples/usage/modelopt_quantize_and_export.py quantize \ --model-path TinyLlama/TinyLlama-1.1B-Chat-v1.0 \ --export-dir ./quantized_tinyllama_fp8 \ --quantization-method modelopt_fp8 # For FP4 quantization python examples/usage/modelopt_quantize_and_export.py quantize \ --model-path TinyLlama/TinyLlama-1.1B-Chat-v1.0 \ --export-dir ./quantized_tinyllama_fp4 \ --quantization-method modelopt_fp4 ``` ##### Available Quantization Methods - `modelopt_fp8`: FP8 quantization with optimal performance on NVIDIA Hopper and Blackwell GPUs - `modelopt_fp4`: FP4 quantization with optimal performance on Nvidia Blackwell GPUs ##### Python API Usage You can also use ModelOpt quantization programmatically: ```python import sglang as sgl from sglang.srt.configs.device_config import DeviceConfig from sglang.srt.configs.load_config import LoadConfig from sglang.srt.configs.model_config import ModelConfig from sglang.srt.model_loader.loader import get_model_loader # Configure model with ModelOpt quantization and export model_config = ModelConfig( model_path="TinyLlama/TinyLlama-1.1B-Chat-v1.0", quantization="modelopt_fp8", # or "modelopt_fp4" trust_remote_code=True, ) load_config = LoadConfig( modelopt_export_path="./exported_model", modelopt_checkpoint_save_path="./checkpoint.pth", # optional, fake quantized checkpoint ) device_config = DeviceConfig(device="cuda") # Load and quantize the model (export happens automatically) model_loader = get_model_loader(load_config, model_config) quantized_model = model_loader.load_model( model_config=model_config, device_config=device_config, ) ``` ##### Deploying Quantized Models After quantization and export, you can deploy the model with SGLang: ```bash # Deploy the exported quantized model python -m sglang.launch_server \ --model-path ./quantized_tinyllama_fp8 \ --quantization modelopt \ --port 30000 --host 0.0.0.0 ``` Or using the Python API: ```python import sglang as sgl # Deploy exported ModelOpt quantized model llm = sgl.Engine( model_path="./quantized_tinyllama_fp8", quantization="modelopt" ) # Run inference prompts = ["Hello, how are you?", "What is the capital of France?"] sampling_params = {"temperature": 0.8, "top_p": 0.95, "max_new_tokens": 100} outputs = llm.generate(prompts, sampling_params) for i, output in enumerate(outputs): print(f"Prompt: {prompts[i]}") print(f"Output: {output.outputs[0].text}") ``` ##### Advanced Features **Checkpoint Management**: Save and restore fake quantized checkpoints for reuse: ```bash # Save the fake quantized checkpoint during quantization python examples/usage/modelopt_quantize_and_export.py quantize \ --model-path meta-llama/Llama-3.2-1B-Instruct \ --export-dir ./quantized_model \ --quantization-method modelopt_fp8 \ --checkpoint-save-path ./my_checkpoint.pth # The checkpoint can be reused for future quantization runs and skip calibration ``` **Export-only Workflow**: If you have a pre-existing fake quantized ModelOpt checkpoint, you can export it directly: ```python from sglang.srt.configs.device_config import DeviceConfig from sglang.srt.configs.load_config import LoadConfig from sglang.srt.configs.model_config import ModelConfig from sglang.srt.model_loader.loader import get_model_loader model_config = ModelConfig( model_path="meta-llama/Llama-3.2-1B-Instruct", quantization="modelopt_fp8", trust_remote_code=True, ) load_config = LoadConfig( modelopt_checkpoint_restore_path="./my_checkpoint.pth", modelopt_export_path="./exported_model", ) # Load and export the model model_loader = get_model_loader(load_config, model_config) model_loader.load_model(model_config=model_config, device_config=DeviceConfig()) ``` ##### Benefits of ModelOpt - **Hardware Optimization**: Specifically optimized for NVIDIA GPU architectures - **Advanced Quantization**: Supports cutting-edge FP8 and FP4 quantization techniques - **Seamless Integration**: Automatic export to HuggingFace format for easy deployment - **Calibration-based**: Uses calibration datasets for optimal quantization quality - **Production Ready**: Enterprise-grade quantization with NVIDIA support ## Online Quantization To enable online quantization, you can simply specify `--quantization` in the command line. For example, you can launch the server with the following command to enable `FP8` quantization for model `meta-llama/Meta-Llama-3.1-8B-Instruct`: ```bash python3 -m sglang.launch_server \ --model-path meta-llama/Meta-Llama-3.1-8B-Instruct \ --quantization fp8 \ --port 30000 --host 0.0.0.0 ``` Our team is working on supporting more online quantization methods. SGLang will soon support methods including but not limited to `["awq", "gptq", "marlin", "gptq_marlin", "awq_marlin", "bitsandbytes", "gguf"]`. SGLang also supports quantization methods based on [torchao](https://github.com/pytorch/ao). You can simply specify `--torchao-config` in the command line to support this feature. For example, if you want to enable `int4wo-128` for model `meta-llama/Meta-Llama-3.1-8B-Instruct`, you can launch the server with the following command: ```bash python3 -m sglang.launch_server \ --model-path meta-llama/Meta-Llama-3.1-8B-Instruct \ --torchao-config int4wo-128 \ --port 30000 --host 0.0.0.0 ``` SGLang supports the following quantization methods based on torchao `["int8dq", "int8wo", "fp8wo", "fp8dq-per_tensor", "fp8dq-per_row", "int4wo-32", "int4wo-64", "int4wo-128", "int4wo-256"]`. Note: According to [this issue](https://github.com/sgl-project/sglang/issues/2219#issuecomment-2561890230), `"int8dq"` method currently has some bugs when using together with cuda graph capture. So we suggest to disable cuda graph capture when using `"int8dq"` method. Namely, please use the following command: ```bash python3 -m sglang.launch_server \ --model-path meta-llama/Meta-Llama-3.1-8B-Instruct \ --torchao-config int8dq \ --disable-cuda-graph \ --port 30000 --host 0.0.0.0 ``` ## Reference - [GPTQModel](https://github.com/ModelCloud/GPTQModel) - [LLM Compressor](https://github.com/vllm-project/llm-compressor/) - [NVIDIA Model Optimizer (ModelOpt)](https://github.com/NVIDIA/TensorRT-Model-Optimizer) - [Torchao: PyTorch Architecture Optimization](https://github.com/pytorch/ao) - [vLLM Quantization](https://docs.vllm.ai/en/latest/quantization/) - [auto-round](https://github.com/intel/auto-round)