import itertools import math from typing import Any, Dict, List, Optional, Tuple import torch import triton import triton.language as tl from sgl_kernel import sgl_per_token_group_quant_fp8 from sglang.srt.utils import get_device_core_count, get_device_name, is_hip is_hip_ = is_hip() fp8_type_ = torch.float8_e4m3fnuz if is_hip_ else torch.float8_e4m3fn @triton.jit def _per_token_group_quant_fp8( # Pointers to inputs and output y_ptr, y_q_ptr, y_s_ptr, # Stride of input y_stride, # Collums of input N, # Avoid to divide zero eps, # Information for float8 fp8_min, fp8_max, # Meta-parameters BLOCK: tl.constexpr, ): """A Triton-accelerated function to perform per-token-group quantization on a tensor. This function converts the tensor values into float8 values. """ # Map the program id to the row of X and Y it should compute. g_id = tl.program_id(0) y_ptr += g_id * y_stride y_q_ptr += g_id * y_stride y_s_ptr += g_id cols = tl.arange(0, BLOCK) # N <= BLOCK mask = cols < N y = tl.load(y_ptr + cols, mask=mask, other=0.0).to(tl.float32) # Quant _absmax = tl.maximum(tl.max(tl.abs(y)), eps) y_s = _absmax / fp8_max y_q = tl.clamp(y / y_s, fp8_min, fp8_max).to(y_q_ptr.dtype.element_ty) tl.store(y_q_ptr + cols, y_q, mask=mask) tl.store(y_s_ptr, y_s) def triton_per_token_group_quant_fp8( x: torch.Tensor, group_size: int, eps: float = 1e-10, dtype: torch.dtype = fp8_type_, ) -> Tuple[torch.Tensor, torch.Tensor]: """Function to perform per-token-group quantization on an input tensor `x`. It converts the tensor values into signed float8 values and returns the quantized tensor along with the scaling factor used for quantization. Args: x: The input tenosr with ndim >= 2. group_size: The group size used for quantization. eps: The minimum to avoid dividing zero. dtype: The dype of output tensor. Note that only `torch.float8_e4m3fn` is supported for now. Returns: Tuple[torch.Tensor, torch.Tensor]: The quantized tensor and the scaling factor for quantization. """ assert ( x.shape[-1] % group_size == 0 ), "the last dimension of `x` cannot be divisible by `group_size`" assert x.is_contiguous(), "`x` is not contiguous" finfo = torch.finfo(dtype) fp8_max = finfo.max fp8_min = -fp8_max x_q = torch.empty_like(x, device=x.device, dtype=dtype) M = x.numel() // group_size N = group_size x_s = torch.empty( x.shape[:-1] + (x.shape[-1] // group_size,), device=x.device, dtype=torch.float32, ) BLOCK = triton.next_power_of_2(N) # heuristics for number of warps num_warps = min(max(BLOCK // 256, 1), 8) num_stages = 1 _per_token_group_quant_fp8[(M,)]( x, x_q, x_s, group_size, N, eps, fp8_min=fp8_min, fp8_max=fp8_max, BLOCK=BLOCK, num_warps=num_warps, num_stages=num_stages, ) return x_q, x_s def sglang_per_token_group_quant_fp8( x: torch.Tensor, group_size: int, eps: float = 1e-10, dtype: torch.dtype = fp8_type_, ): assert ( x.shape[-1] % group_size == 0 ), "the last dimension of `x` cannot be divisible by `group_size`" assert x.is_contiguous(), "`x` is not contiguous" finfo = torch.finfo(dtype) fp8_max = finfo.max fp8_min = -fp8_max x_q = torch.empty_like(x, device=x.device, dtype=dtype) M = x.numel() // group_size N = group_size x_s = torch.empty( x.shape[:-1] + (x.shape[-1] // group_size,), device=x.device, dtype=torch.float32, ) sgl_per_token_group_quant_fp8(x, x_q, x_s, group_size, eps, fp8_min, fp8_max) return x_q, x_s def calculate_diff(batch_size, seq_len, group_size): dtype = torch.float16 device = torch.device("cuda") hidden_dim = group_size * 2 x = torch.randn(batch_size, seq_len, hidden_dim, device=device, dtype=dtype) x_q_triton, x_s_triton = triton_per_token_group_quant_fp8(x.clone(), group_size) x_q_sglang, x_s_sglang = sglang_per_token_group_quant_fp8(x.clone(), group_size) if torch.allclose( x_q_triton.to(torch.float32), x_q_sglang.to(torch.float32), rtol=1e-3, atol=1e-5 ) and torch.allclose(x_s_triton, x_s_sglang, rtol=1e-3, atol=1e-5): print("✅ All implementations match") else: print("❌ Implementations differ") batch_size_range = [1, 2, 4, 8, 16, 32, 64] seq_len_range = [64, 128, 256, 512, 1024, 2048] group_size_range = [128] # For DeepSeek V3/R1 configs = list(itertools.product(batch_size_range, seq_len_range, group_size_range)) @triton.testing.perf_report( triton.testing.Benchmark( x_names=["batch_size", "seq_len", "group_size"], x_vals=configs, line_arg="provider", line_vals=["triton", "sglang"], line_names=["Triton", "SGL Kernel"], styles=[("blue", "-"), ("green", "-")], ylabel="us", plot_name="per-token-group-quant-fp8-performance", args={}, ) ) def benchmark(batch_size, seq_len, group_size, provider): dtype = torch.bfloat16 device = torch.device("cuda") hidden_dim = group_size * 2 x = torch.randn(batch_size, seq_len, hidden_dim, device=device, dtype=dtype) quantiles = [0.5, 0.2, 0.8] if provider == "triton": fn = lambda: triton_per_token_group_quant_fp8(x.clone(), group_size) elif provider == "sglang": fn = lambda: sglang_per_token_group_quant_fp8(x.clone(), group_size) ms, min_ms, max_ms = triton.testing.do_bench(fn, quantiles=quantiles) return 1000 * ms, 1000 * max_ms, 1000 * min_ms if __name__ == "__main__": calculate_diff(batch_size=4, seq_len=128, group_size=64) benchmark.run(print_data=True)