""" Copyright 2023-2024 SGLang Team Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. """ # Adapted from # https://github.com/vllm-project/vllm/blob/c7f2cf2b7f67bce5842fedfdba508440fe257375/vllm/model_executor/models/mixtral_quant.py#L1 """Inference-only Mixtral model.""" from typing import Iterable, Optional, Tuple import numpy as np import torch import torch.nn.functional as F from torch import nn from transformers import MixtralConfig from vllm.config import CacheConfig from vllm.distributed import ( get_tensor_model_parallel_rank, get_tensor_model_parallel_world_size, tensor_model_parallel_all_reduce, ) from vllm.model_executor.layers.rotary_embedding import get_rope from vllm.model_executor.layers.vocab_parallel_embedding import ( ParallelLMHead, VocabParallelEmbedding, ) from vllm.model_executor.model_loader.weight_utils import default_weight_loader from sglang.srt.layers.layernorm import RMSNorm from sglang.srt.layers.linear import ( QKVParallelLinear, ReplicatedLinear, RowParallelLinear, ) from sglang.srt.layers.logits_processor import LogitsProcessor from sglang.srt.layers.quantization.base_config import QuantizationConfig from sglang.srt.layers.radix_attention import RadixAttention from sglang.srt.model_executor.forward_batch_info import InputMetadata class MixtralMLP(nn.Module): def __init__( self, num_experts: int, hidden_size: int, intermediate_size: int, quant_config: Optional[QuantizationConfig] = None, ) -> None: super().__init__() self.num_experts = num_experts self.ffn_dim = intermediate_size self.hidden_dim = hidden_size self.w1 = ReplicatedLinear( self.hidden_dim, self.ffn_dim, bias=False, quant_config=quant_config ) self.w2 = ReplicatedLinear( self.ffn_dim, self.hidden_dim, bias=False, quant_config=quant_config ) self.w3 = ReplicatedLinear( self.hidden_dim, self.ffn_dim, bias=False, quant_config=quant_config ) # TODO: Use vllm's SiluAndMul self.act_fn = nn.SiLU() def forward(self, hidden_states: torch.Tensor) -> torch.Tensor: w1_out, _ = self.w1(hidden_states) w1_out = self.act_fn(w1_out) w3_out, _ = self.w3(hidden_states) current_hidden_states = w1_out * w3_out current_hidden_states, _ = self.w2(current_hidden_states) return current_hidden_states class MixtralMoE(nn.Module): def __init__( self, config: MixtralConfig, quant_config: Optional[QuantizationConfig] = None, ): super().__init__() self.config = config self.rank = get_tensor_model_parallel_rank() self.tp_size = get_tensor_model_parallel_world_size() self.num_total_experts = config.num_local_experts self.top_k = config.num_experts_per_tok if self.tp_size > self.num_total_experts: raise ValueError( f"Tensor parallel size {self.tp_size} is greater than " f"the number of experts {self.num_total_experts}." ) # Split experts equally between ranks self.expert_indicies = np.array_split( range(self.num_total_experts), self.tp_size )[self.rank].tolist() if not self.expert_indicies: raise ValueError(f"Rank {self.rank} has no experts assigned to it.") self.experts = nn.ModuleList( [ ( MixtralMLP( self.num_total_experts, config.hidden_size, config.intermediate_size, quant_config=quant_config, ) if idx in self.expert_indicies else None ) for idx in range(self.num_total_experts) ] ) self.gate = ReplicatedLinear( config.hidden_size, self.num_total_experts, bias=False, quant_config=None ) def forward(self, hidden_states: torch.Tensor) -> torch.Tensor: router_logits, _ = self.gate(hidden_states) routing_weights = F.softmax(router_logits, dim=1, dtype=torch.float) routing_weights, selected_experts = torch.topk( routing_weights, self.top_k, dim=-1 ) routing_weights /= routing_weights.sum(dim=-1, keepdim=True) final_hidden_states = None for expert_idx in self.expert_indicies: expert_layer = self.experts[expert_idx] expert_mask = selected_experts == expert_idx expert_weights = (routing_weights * expert_mask).sum(dim=-1, keepdim=True) current_hidden_states = expert_layer(hidden_states).mul_(expert_weights) if final_hidden_states is None: final_hidden_states = current_hidden_states else: final_hidden_states.add_(current_hidden_states) return tensor_model_parallel_all_reduce(final_hidden_states) class MixtralAttention(nn.Module): def __init__( self, hidden_size: int, num_heads: int, num_kv_heads: int, layer_id: int = 0, max_position: int = 4096 * 32, rope_theta: float = 10000, quant_config: Optional[QuantizationConfig] = None, ) -> None: super().__init__() self.hidden_size = hidden_size tp_size = get_tensor_model_parallel_world_size() self.total_num_heads = num_heads assert self.total_num_heads % tp_size == 0 self.num_heads = self.total_num_heads // tp_size self.total_num_kv_heads = num_kv_heads if self.total_num_kv_heads >= tp_size: # Number of KV heads is greater than TP size, so we partition # the KV heads across multiple tensor parallel GPUs. assert self.total_num_kv_heads % tp_size == 0 else: # Number of KV heads is less than TP size, so we replicate # the KV heads across multiple tensor parallel GPUs. assert tp_size % self.total_num_kv_heads == 0 self.num_kv_heads = max(1, self.total_num_kv_heads // tp_size) self.head_dim = hidden_size // self.total_num_heads self.q_size = self.num_heads * self.head_dim self.kv_size = self.num_kv_heads * self.head_dim self.scaling = self.head_dim**-0.5 self.rope_theta = rope_theta self.qkv_proj = QKVParallelLinear( hidden_size, self.head_dim, self.total_num_heads, self.total_num_kv_heads, bias=False, quant_config=quant_config, ) self.o_proj = RowParallelLinear( self.total_num_heads * self.head_dim, hidden_size, bias=False, quant_config=quant_config, ) self.rotary_emb = get_rope( self.head_dim, rotary_dim=self.head_dim, max_position=max_position, base=int(self.rope_theta), is_neox_style=True, ) self.attn = RadixAttention( self.num_heads, self.head_dim, self.scaling, num_kv_heads=self.num_kv_heads, layer_id=layer_id, ) def forward( self, positions: torch.Tensor, hidden_states: torch.Tensor, input_metadata: InputMetadata, ) -> torch.Tensor: qkv, _ = self.qkv_proj(hidden_states) q, k, v = qkv.split([self.q_size, self.kv_size, self.kv_size], dim=-1) q, k = self.rotary_emb(positions, q, k) attn_output = self.attn(q, k, v, input_metadata) output, _ = self.o_proj(attn_output) return output class MixtralDecoderLayer(nn.Module): def __init__( self, config: MixtralConfig, layer_id: int = 0, quant_config: Optional[QuantizationConfig] = None, ) -> None: super().__init__() self.hidden_size = config.hidden_size # Requires transformers > 4.32.0 rope_theta = getattr(config, "rope_theta", 10000) self.self_attn = MixtralAttention( hidden_size=self.hidden_size, num_heads=config.num_attention_heads, max_position=config.max_position_embeddings, num_kv_heads=config.num_key_value_heads, layer_id=layer_id, rope_theta=rope_theta, quant_config=quant_config, ) self.block_sparse_moe = MixtralMoE(config=config, quant_config=quant_config) self.input_layernorm = RMSNorm(config.hidden_size, eps=config.rms_norm_eps) self.post_attention_layernorm = RMSNorm( config.hidden_size, eps=config.rms_norm_eps ) def forward( self, positions: torch.Tensor, hidden_states: torch.Tensor, input_metadata: InputMetadata, residual: Optional[torch.Tensor], ) -> torch.Tensor: # Self Attention if residual is None: residual = hidden_states hidden_states = self.input_layernorm(hidden_states) else: hidden_states, residual = self.input_layernorm(hidden_states, residual) hidden_states = self.self_attn( positions=positions, hidden_states=hidden_states, input_metadata=input_metadata, ) # Fully Connected hidden_states, residual = self.post_attention_layernorm(hidden_states, residual) hidden_states = self.block_sparse_moe(hidden_states) return hidden_states, residual class MixtralModel(nn.Module): def __init__( self, config: MixtralConfig, quant_config: Optional[QuantizationConfig] = None, ) -> None: super().__init__() self.padding_idx = config.pad_token_id self.vocab_size = config.vocab_size self.embed_tokens = VocabParallelEmbedding( config.vocab_size, config.hidden_size, ) self.layers = nn.ModuleList( [ MixtralDecoderLayer(config, i, quant_config=quant_config) for i in range(config.num_hidden_layers) ] ) self.norm = RMSNorm(config.hidden_size, eps=config.rms_norm_eps) def forward( self, input_ids: torch.Tensor, positions: torch.Tensor, input_metadata: InputMetadata, input_embeds: torch.Tensor = None, ) -> torch.Tensor: if input_embeds is None: hidden_states = self.embed_tokens(input_ids) else: hidden_states = input_embeds residual = None for i in range(len(self.layers)): layer = self.layers[i] hidden_states, residual = layer( positions, hidden_states, input_metadata, residual ) hidden_states, _ = self.norm(hidden_states, residual) return hidden_states class QuantMixtralForCausalLM(nn.Module): def __init__( self, config: MixtralConfig, quant_config: Optional[QuantizationConfig] = None, cache_config: Optional[CacheConfig] = None, ) -> None: super().__init__() self.config = config self.quant_config = quant_config self.model = MixtralModel(config, quant_config=quant_config) self.lm_head = ParallelLMHead(config.vocab_size, config.hidden_size) self.logits_processor = LogitsProcessor(config) @torch.no_grad() def forward( self, input_ids: torch.Tensor, positions: torch.Tensor, input_metadata: InputMetadata, input_embeds: torch.Tensor = None, ) -> torch.Tensor: hidden_states = self.model(input_ids, positions, input_metadata, input_embeds) return self.logits_processor( input_ids, hidden_states, self.lm_head.weight, input_metadata ) def load_weights(self, weights: Iterable[Tuple[str, torch.Tensor]]): stacked_params_mapping = [ # (param_name, shard_name, shard_id) ("qkv_proj", "q_proj", "q"), ("qkv_proj", "k_proj", "k"), ("qkv_proj", "v_proj", "v"), ] params_dict = dict(self.named_parameters()) for name, loaded_weight in weights: if "rotary_emb.inv_freq" in name: continue for param_name, weight_name, shard_id in stacked_params_mapping: if weight_name not in name: continue name = name.replace(weight_name, param_name) # Skip loading extra bias for GPTQ models. if name.endswith(".bias") and name not in params_dict: continue param = params_dict[name] weight_loader = param.weight_loader weight_loader(param, loaded_weight, shard_id) break else: # Skip loading extra bias for GPTQ models. if name.endswith(".bias") and name not in params_dict: continue # Skip experts that are not assigned to this worker. if "block_sparse_moe.experts." in name and name not in params_dict: continue param = params_dict[name] weight_loader = getattr(param, "weight_loader", default_weight_loader) weight_loader(param, loaded_weight) EntryClass = QuantMixtralForCausalLM