import typing import unittest import torch from sglang.srt.sampling.penaltylib.penalizers.repetition_penalty import ( BatchedRepetitionPenalizer, ) from sglang.test.srt.sampling.penaltylib.utils import ( BaseBatchedPenalizerTest, MockSamplingParams, Step, StepType, Subject, ) REPETITION_PENALTY = 2.0 class TestBatchedRepetitionPenalizer(BaseBatchedPenalizerTest): Penalizer = BatchedRepetitionPenalizer def _create_subject(self, repetition_penalty: float) -> Subject: l = 1.0 / repetition_penalty return Subject( sampling_params=MockSamplingParams( repetition_penalty=repetition_penalty, ), steps=[ Step( type=StepType.INPUT, token_ids=[0, 1, 2], expected_tensors={ "repetition_penalties": self.tensor( [[repetition_penalty] * self.vocab_size], dtype=torch.float32, ), "cumulated_repetition_penalties": ( self.tensor( [[2.0, 2.0, 2.0, 1.0, 1.0]], dtype=torch.float32 ) if repetition_penalty != 1.0 else self.tensor( [[1.0] * self.vocab_size], dtype=torch.float32 ) ), }, expected_logits=( self.tensor([[l, l, l, 1.0, 1.0]], dtype=torch.float32) if repetition_penalty != 1.0 else self.tensor([[1.0] * self.vocab_size], dtype=torch.float32) ), ), Step( type=StepType.OUTPUT, token_ids=[0, 1, 3], expected_tensors={ "repetition_penalties": self.tensor( [[repetition_penalty] * self.vocab_size], dtype=torch.float32, ), "cumulated_repetition_penalties": ( self.tensor( [[2.0, 2.0, 2.0, 2.0, 1.0]], dtype=torch.float32 ) if repetition_penalty != 1.0 else self.tensor( [[1.0] * self.vocab_size], dtype=torch.float32 ) ), }, expected_logits=( self.tensor([[l, l, l, l, 1.0]], dtype=torch.float32) if repetition_penalty != 1.0 else self.tensor([[1.0] * self.vocab_size], dtype=torch.float32) ), ), ], ) def create_test_subjects(self) -> typing.List[Subject]: self.enabled = self._create_subject(repetition_penalty=REPETITION_PENALTY) self.disabled = self._create_subject(repetition_penalty=1.0) if __name__ == "__main__": unittest.main()