# Benchmark Latency and Throughput ## SGLang ### Launch server ``` python -m sglang.launch_server --model-path meta-llama/Llama-2-7b-chat-hf --port 30000 ``` ### Benchmark one batch ``` python3 bench_one.py python3 bench_one.py --batch-size 64 ``` ### Benchmark online serving with many requests ``` python3 bench_serving.py --backend srt --port 30000 --tokenizer meta-llama/Llama-2-7b-chat-hf --num-prompt 1000 --request-rate 100 --input-len 1024 --output-len 256 ``` ### Benchmark online serving on the ShareGPT dataset #### Download data ``` wget https://huggingface.co/datasets/anon8231489123/ShareGPT_Vicuna_unfiltered/resolve/main/ShareGPT_V3_unfiltered_cleaned_split.json ``` #### Run ShareGPT ``` python3 bench_throughput.py --backend srt --port 30000 --tokenizer meta-llama/Llama-2-7b-chat-hf --dataset ShareGPT_V3_unfiltered_cleaned_split.json --num-prompts 10 --request-rate 10 ``` ## Other baselines ### vLLM ``` python3 -m vllm.entrypoints.api_server --model meta-llama/Llama-2-7b-chat-hf --tensor-parallel 1 --disable-log-requests --swap-space 16 --port 21000 ``` ``` # run synthetic python3 bench_throughput.py --backend vllm --port 30000 --tokenizer meta-llama/Llama-2-7b-chat-hf --num-prompt 1000 --request-rate 100 --input-len 1024 --output-len 256 ``` ``` # run ShareGPT python3 bench_throughput.py --backend vllm --port 21000 --tokenizer meta-llama/Llama-2-7b-chat-hf --dataset ShareGPT_V3_unfiltered_cleaned_split.json --num-prompts 10 --request-rate 10 ``` ### LightLLM ``` python -m lightllm.server.api_server --model_dir ~/model_weights/Llama-2-7b-chat-hf --max_total_token_num 15600 --tokenizer_mode auto --port 22000 ``` ``` python3 bench_throughput.py --backend lightllm --port 22000 --tokenizer meta-llama/Llama-2-7b-chat-hf --dataset ShareGPT_V3_unfiltered_cleaned_split.json --num-prompts 10 --request-rate 10 ```