#include #include #include #include "utils.h" using FP8_TYPE = c10::Float8_e4m3fn; __device__ __forceinline__ float GroupReduceMax(volatile float* smem, const int tid) { smem[tid] = fmaxf(smem[tid], smem[tid + 8]); if (tid < 4) smem[tid] = fmaxf(smem[tid], smem[tid + 4]); if (tid < 2) smem[tid] = fmaxf(smem[tid], smem[tid + 2]); if (tid < 1) smem[tid] = fmaxf(smem[tid], smem[tid + 1]); return smem[0]; } template __global__ void per_token_group_quant_fp8_kernel( const T* __restrict__ input, void* __restrict__ output_q, float* __restrict__ output_s, const int group_size, const int num_groups, const float eps, const float fp8_min, const float fp8_max) { const int groups_per_block = 16; const int block_group_id = blockIdx.x * groups_per_block; const int tid = threadIdx.x; const int local_group_id = tid / 16; const int local_tid = tid % 16; __shared__ float s_absmax[16][17]; float local_absmax = eps; if (block_group_id + local_group_id < num_groups) { const T* group_input = input + (block_group_id + local_group_id) * group_size; FP8_TYPE* group_output = static_cast(output_q) + (block_group_id + local_group_id) * group_size; float* scale_output = output_s + block_group_id + local_group_id; for (int i = local_tid; i < group_size; i += 16) { float val = static_cast(group_input[i]); float abs_val = fabsf(val); local_absmax = fmaxf(local_absmax, abs_val); } s_absmax[local_group_id][local_tid] = local_absmax; __syncthreads(); if (local_tid < 8) { GroupReduceMax(&s_absmax[local_group_id][0], local_tid); } __syncthreads(); const float group_absmax = s_absmax[local_group_id][0]; const float y_s = group_absmax / fp8_max; if (local_tid == 0) { *scale_output = y_s; } for (int i = local_tid; i < group_size; i += 16) { float val = static_cast(group_input[i]); float q_val = fminf(fmaxf(val / y_s, fp8_min), fp8_max); group_output[i] = FP8_TYPE(q_val); } } } void sgl_per_token_group_quant_fp8( torch::Tensor input, torch::Tensor output_q, torch::Tensor output_s, int64_t group_size, double eps, double fp8_min, double fp8_max) { CHECK_INPUT(input); CHECK_INPUT(output_q); CHECK_INPUT(output_s); const int num_groups = input.numel() / group_size; CHECK_EQ(input.numel() % group_size, 0); dim3 grid((num_groups + 15) / 16); dim3 block(256); cudaStream_t stream = at::cuda::getCurrentCUDAStream(); DISPATCH_PYTORCH_DTYPE_TO_CTYPE_FLOAT_FP16(input.scalar_type(), scalar_t, [&] { per_token_group_quant_fp8_kernel<<>>( static_cast(input.data_ptr()), output_q.data_ptr(), static_cast(output_s.data_ptr()), group_size, num_groups, (float)eps, (float)fp8_min, (float)fp8_max); return true; }); }