import random import unittest import torch from sglang.srt.layers.attention.triton_ops.decode_attention import ( decode_attention_fwd, decode_attention_fwd_grouped, decode_attention_fwd_normal, ) from sglang.srt.layers.attention.triton_ops.extend_attention import ( extend_attention_fwd, redundant_attention, ) from sglang.srt.layers.attention.triton_ops.prefill_attention import ( context_attention_fwd, ) class TestTritonAttention(unittest.TestCase): def _set_all_seeds(self, seed): """Set all random seeds for reproducibility.""" random.seed(seed) torch.manual_seed(seed) torch.cuda.manual_seed(seed) torch.cuda.manual_seed_all(seed) torch.backends.cudnn.deterministic = True torch.backends.cudnn.benchmark = False def setUp(self): # Set seeds before each test method self._set_all_seeds(42) def _test_extend_attention_once(self, B, N_CTX, H_Q, H_KV, D): dtype = torch.bfloat16 b_seq_len_prefix = torch.randint( 1, N_CTX // 2, (B,), dtype=torch.int32, device="cuda" ) b_seq_len_extend = torch.randint( 1, N_CTX // 2, (B,), dtype=torch.int32, device="cuda" ) b_seq_len = b_seq_len_prefix + b_seq_len_extend max_len_in_batch = torch.max(b_seq_len, 0)[0].item() b_req_idx = torch.arange(B, dtype=torch.int32, device="cuda") req_to_tokens = torch.empty( (B, max_len_in_batch), dtype=torch.int32, device="cuda" ) b_start_loc = torch.zeros((B,), dtype=torch.int32, device="cuda") b_start_loc[1:] = torch.cumsum(b_seq_len[:-1], 0) b_start_loc_extend = torch.zeros((B,), dtype=torch.int32, device="cuda") b_start_loc_extend[1:] = torch.cumsum(b_seq_len_extend[:-1], 0) for i in range(B): req_to_tokens[i, : b_seq_len[i]] = torch.arange( b_start_loc[i], b_start_loc[i] + b_seq_len[i] ) total_token_num = torch.sum(b_seq_len).item() extend_token_num = torch.sum(b_seq_len_extend).item() k_buffer = torch.empty( (total_token_num, H_KV, D), dtype=dtype, device="cuda" ).normal_(mean=0.1, std=0.2) v_buffer = torch.empty( (total_token_num, H_KV, D), dtype=dtype, device="cuda" ).normal_(mean=0.1, std=0.2) k_extend = torch.empty((extend_token_num, H_KV, D), dtype=dtype, device="cuda") v_extend = torch.empty((extend_token_num, H_KV, D), dtype=dtype, device="cuda") q_extend = torch.empty((extend_token_num, H_Q, D), dtype=dtype, device="cuda") for i in range(B): extend_start_in_buffer = b_start_loc[i] + b_seq_len_prefix[i] extend_end_in_buffer = b_start_loc[i] + b_seq_len[i] extend_start = b_start_loc_extend[i] extend_end = b_start_loc_extend[i] + b_seq_len_extend[i] k_extend[extend_start:extend_end] = k_buffer[ extend_start_in_buffer:extend_end_in_buffer ] v_extend[extend_start:extend_end] = v_buffer[ extend_start_in_buffer:extend_end_in_buffer ] q_extend[extend_start:extend_end] = torch.empty( (b_seq_len_extend[i], H_Q, D), dtype=dtype, device="cuda" ).normal_(mean=0.1, std=0.2) o_extend = torch.empty((extend_token_num, H_Q, D), dtype=dtype, device="cuda") o_redundant = torch.empty( (extend_token_num, H_Q, D), dtype=dtype, device="cuda" ) b_seq_len_extend = b_seq_len - b_seq_len_prefix b_start_loc_extend = torch.zeros_like(b_seq_len) b_start_loc_extend[1:] = torch.cumsum(b_seq_len_extend[:-1], 0) max_len_extend = torch.max(b_seq_len_extend, 0)[0].item() extend_attention_fwd( q_extend, k_extend, v_extend, o_extend, k_buffer, v_buffer, req_to_tokens, b_req_idx, b_seq_len, b_seq_len_extend, b_start_loc_extend, max_len_extend, ) redundant_attention( q_extend, o_redundant, k_buffer, v_buffer, b_req_idx, b_start_loc, b_seq_len, b_seq_len_prefix, max_len_in_batch, ) self.assertTrue(torch.allclose(o_extend, o_redundant, rtol=1e-2)) def test_extend_attention(self): # Define the varying parameter values attention_values = [128, 96, 80, 13] # Loop through the values and call the method for value in attention_values: self._test_extend_attention_once(19, 12331, 12, 4, value) def _test_context_attention_once(self, head_dim, is_causal): # Set up a simple test case num_heads = 4 seq_lens = [8, 12] max_seq_len = max(seq_lens) # Create random input tensors q = torch.randn(sum(seq_lens), num_heads, head_dim, device="cuda") k = torch.randn(sum(seq_lens), num_heads, head_dim, device="cuda") v = torch.randn(sum(seq_lens), num_heads, head_dim, device="cuda") o = torch.zeros(sum(seq_lens), num_heads, head_dim, device="cuda") # Create b_start_loc and b_seq_len tensors b_start_loc = torch.tensor([0, seq_lens[0]], device="cuda") b_seq_len = torch.tensor(seq_lens, device="cuda") context_attention_fwd( q, k, v, o, b_start_loc, b_seq_len, max_seq_len, is_causal=is_causal ) cu_seq_lens = [0] * (len(seq_lens) + 1) for i, seq_len in enumerate(seq_lens): cu_seq_lens[i + 1] = cu_seq_lens[i] + seq_len for i in range(len(seq_lens)): start, end = cu_seq_lens[i], cu_seq_lens[i + 1] o_torch = torch.nn.functional.scaled_dot_product_attention( q[start:end].permute(1, 0, 2), k[start:end].permute(1, 0, 2), v[start:end].permute(1, 0, 2), is_causal=is_causal, ).permute(1, 0, 2) cos_sim = torch.nn.functional.cosine_similarity( o[start:end].flatten(), o_torch.flatten(), dim=0 ) self.assertTrue(cos_sim.item() > 1 - (1e-5)) self.assertTrue(torch.allclose(o[start:end], o_torch, atol=1e-2)) def test_context_attention(self): head_dim = [128, 96, 80, 13] for dim in head_dim: for is_causal in [True, False]: self._test_context_attention_once(dim, is_causal) def _test_decode_attention_once(self, B, H_Q, H_KV, D): dtype = torch.bfloat16 seq_len = 10 # This represents the number of tokens already in the sequence total_tokens = B * seq_len sm_scale = 1.0 / (D**0.5) num_kv_splits = 8 # q represents the new token being generated, one per batch q = torch.randn(B, H_Q, D, dtype=dtype, device="cuda") # k_buffer and v_buffer represent all previous tokens k_buffer = torch.randn(total_tokens, H_KV, D, dtype=dtype, device="cuda") v_buffer = torch.randn(total_tokens, H_KV, D, dtype=dtype, device="cuda") # o will have the same shape as q o = torch.zeros(B, H_Q, D, dtype=dtype, device="cuda") req_to_token = torch.arange(total_tokens, device="cuda").reshape(B, seq_len) b_req_idx = torch.arange(B, device="cuda") b_start_loc = torch.arange(0, total_tokens, seq_len, device="cuda") b_seq_len = torch.full((B,), seq_len, device="cuda") attn_logits = torch.empty( (B, H_Q, num_kv_splits, D + 1), dtype=torch.float32, device="cuda", ) decode_attention_fwd( q, k_buffer, v_buffer, o, req_to_token, b_req_idx, b_start_loc, b_seq_len, attn_logits, seq_len, num_kv_splits, sm_scale, ) def test_decode_attention(self): # Here we just to ensure there is no error # TODO: correctnesss test # Test configurations configs = [ (2, 4, 4, 64), # MHA (2, 4, 2, 64), # GQA (2, 4, 4, 80), # Non-standard head dim (2, 4, 4, 13), # Prime number head dim ] for B, H_Q, H_KV, D in configs: self._test_decode_attention_once(B, H_Q, H_KV, D) def _test_grouped_decode_attention_once(self, B, H_Q, H_KV, D, D_V): dtype = torch.bfloat16 seq_len = 128 # This represents the number of tokens already in the sequence total_tokens = B * seq_len sm_scale = 1.0 / (D**0.5) num_kv_splits = 8 # q represents the new token being generated, one per batch q = torch.randn(B, H_Q, D, dtype=dtype, device="cuda") # k_buffer and v_buffer represent all previous tokens k_buffer = torch.randn(total_tokens, H_KV, D, dtype=dtype, device="cuda") v_buffer = torch.randn(total_tokens, H_KV, D_V, dtype=dtype, device="cuda") # o will have the same shape as q o = torch.zeros(B, H_Q, D_V, dtype=dtype, device="cuda") o_grouped = torch.zeros(B, H_Q, D_V, dtype=dtype, device="cuda") req_to_token = torch.arange(total_tokens, device="cuda").reshape(B, seq_len) b_req_idx = torch.arange(B, device="cuda") b_start_loc = torch.arange(0, total_tokens, seq_len, device="cuda") b_seq_len = torch.full((B,), seq_len, device="cuda") attn_logits = torch.empty( (B, H_Q, num_kv_splits, D_V + 1), dtype=torch.float32, device="cuda", ) decode_attention_fwd_normal( q, k_buffer, v_buffer, o, req_to_token, b_req_idx, b_seq_len, attn_logits, seq_len, num_kv_splits, sm_scale, ) attn_logits1 = torch.empty( (B, H_Q, num_kv_splits, D_V + 1), dtype=torch.float32, device="cuda", ) decode_attention_fwd_grouped( q, k_buffer, v_buffer, o_grouped, req_to_token, b_req_idx, b_seq_len, attn_logits1, seq_len, num_kv_splits, sm_scale, ) cos_sim = torch.nn.functional.cosine_similarity( o.flatten(), o_grouped.flatten(), dim=0 ) print(cos_sim.item()) self.assertTrue(cos_sim.item() > 0.99) self.assertTrue(torch.allclose(o, o_grouped, atol=3e-2)) def test_grouped_decode_attention(self): configs = [ (2, 16, 16, 64, 64), (2, 16, 1, 64, 64), (2, 64, 1, 13, 13), (2, 128, 1, 80, 80), (2, 128, 2, 512, 512), (2, 128, 1, 576, 512), ] for B, H_Q, H_KV, D, D_V in configs: self._test_grouped_decode_attention_once(B, H_Q, H_KV, D, D_V) if __name__ == "__main__": unittest.main()