name: PR Test (AMD) on: push: branches: [ main ] paths: - "python/sglang/**" - "test/**" - "sgl-kernel/**" - ".github/workflows/pr-test-amd.yml" pull_request: branches: [ main ] paths: - "python/sglang/**" - "test/**" - "sgl-kernel/**" - ".github/workflows/pr-test-amd.yml" workflow_dispatch: concurrency: group: pr-test-amd-${{ github.ref }} cancel-in-progress: true jobs: accuracy-test-1-gpu-amd: if: (github.repository == 'sgl-project/sglang' || github.event_name == 'pull_request') && github.event.pull_request.draft == false runs-on: linux-mi300-gpu-1 steps: - name: Checkout code uses: actions/checkout@v4 - name: Setup docker run: | # Ensure GPU isolation if pod is part of kubernetes setup with DEVICE_FLAG. if [ -f "/etc/podinfo/gha-render-devices" ]; then DEVICE_FLAG=$(cat /etc/podinfo/gha-render-devices) else DEVICE_FLAG="--device /dev/dri" fi docker pull ghcr.io/saienduri/sglang-aiter-v0.1.1:428 docker run -dt --user root --device=/dev/kfd $DEVICE_FLAG \ -v ${{ github.workspace }}:/sglang-checkout --ipc=host --group-add video \ --cap-add=SYS_PTRACE -e HF_TOKEN=${HF_TOKEN} --security-opt seccomp=unconfined \ -w /sglang-checkout --name ci_sglang \ ghcr.io/saienduri/sglang-aiter-v0.1.1:428 - name: Install dependencies run: | docker exec ci_sglang pip install --upgrade pip docker exec ci_sglang pip uninstall sgl-kernel -y || true docker exec -w /sglang-checkout/sgl-kernel ci_sglang bash -c "rm -f pyproject.toml && mv pyproject_rocm.toml pyproject.toml && python3 setup_rocm.py install" docker exec ci_sglang pip install -e "python[dev_hip]" docker exec -w / ci_sglang git clone https://github.com/merrymercy/human-eval.git docker exec -w /human-eval ci_sglang pip install -e . - name: Evaluate Accuracy timeout-minutes: 20 run: | docker exec -w /sglang-checkout/test/srt -e SGLANG_IS_IN_CI=1 ci_sglang python3 test_eval_accuracy_large.py docker exec -w /sglang-checkout/test/srt -e SGLANG_IS_IN_CI=1 ci_sglang python3 test_eval_fp8_accuracy.py docker exec -w /sglang-checkout/test/srt -e SGLANG_IS_IN_CI=1 ci_sglang python3 models/test_qwen_models.py accuracy-test-2-gpu-amd: if: (github.repository == 'sgl-project/sglang' || github.event_name == 'pull_request') && github.event.pull_request.draft == false runs-on: linux-mi300-gpu-2 steps: - name: Checkout code uses: actions/checkout@v4 - name: Setup docker run: | # Ensure GPU isolation if pod is part of kubernetes setup with DEVICE_FLAG. if [ -f "/etc/podinfo/gha-render-devices" ]; then DEVICE_FLAG=$(cat /etc/podinfo/gha-render-devices) else DEVICE_FLAG="--device /dev/dri" fi docker pull ghcr.io/saienduri/sglang-aiter-v0.1.1:428 docker run -dt --user root --device=/dev/kfd $DEVICE_FLAG \ -v ${{ github.workspace }}:/sglang-checkout --ipc=host --group-add video \ --cap-add=SYS_PTRACE -e HF_TOKEN=${HF_TOKEN} --security-opt seccomp=unconfined \ -w /sglang-checkout --name ci_sglang \ ghcr.io/saienduri/sglang-aiter-v0.1.1:428 - name: Install dependencies run: | docker exec ci_sglang pip install --upgrade pip docker exec ci_sglang pip uninstall sgl-kernel -y || true docker exec -w /sglang-checkout/sgl-kernel ci_sglang bash -c "rm -f pyproject.toml && mv pyproject_rocm.toml pyproject.toml && python3 setup_rocm.py install" docker exec ci_sglang pip install -e "python[dev_hip]" docker exec -w / ci_sglang git clone https://github.com/merrymercy/human-eval.git docker exec -w /human-eval ci_sglang pip install -e . - name: Evaluate accuracy (TP=2) timeout-minutes: 20 run: | docker exec -w /sglang-checkout/test/srt -e SGLANG_IS_IN_CI=1 ci_sglang python3 test_moe_eval_accuracy_large.py mla-test-1-gpu-amd: if: (github.repository == 'sgl-project/sglang' || github.event_name == 'pull_request') && github.event.pull_request.draft == false runs-on: linux-mi300-gpu-1 steps: - name: Checkout code uses: actions/checkout@v4 - name: Setup docker run: | # Ensure GPU isolation if pod is part of kubernetes setup with DEVICE_FLAG. if [ -f "/etc/podinfo/gha-render-devices" ]; then DEVICE_FLAG=$(cat /etc/podinfo/gha-render-devices) else DEVICE_FLAG="--device /dev/dri" fi docker pull ghcr.io/saienduri/sglang-aiter-v0.1.1:428 docker run -dt --user root --device=/dev/kfd $DEVICE_FLAG \ -v ${{ github.workspace }}:/sglang-checkout --ipc=host --group-add video \ --cap-add=SYS_PTRACE -e HF_TOKEN=${{ secrets.AMD_HF_TOKEN }} --security-opt seccomp=unconfined \ -w /sglang-checkout --name ci_sglang \ ghcr.io/saienduri/sglang-aiter-v0.1.1:428 - name: Install dependencies run: | docker exec ci_sglang pip install --upgrade pip docker exec ci_sglang pip uninstall sgl-kernel -y || true docker exec -w /sglang-checkout/sgl-kernel ci_sglang bash -c "rm -f pyproject.toml && mv pyproject_rocm.toml pyproject.toml && python3 setup_rocm.py install" docker exec ci_sglang pip install -e "python[dev_hip]" docker exec -w / ci_sglang git clone https://github.com/merrymercy/human-eval.git docker exec -w /human-eval ci_sglang pip install -e . - name: MLA TEST timeout-minutes: 20 run: | docker exec -w /sglang-checkout/test/srt -e SGLANG_IS_IN_CI=1 ci_sglang python3 test_mla.py performance-test-1-gpu-part-1-amd: if: (github.repository == 'sgl-project/sglang' || github.event_name == 'pull_request') && github.event.pull_request.draft == false runs-on: linux-mi300-gpu-1 steps: - name: Checkout code uses: actions/checkout@v4 - name: Setup docker run: | # Ensure GPU isolation if pod is part of kubernetes setup with DEVICE_FLAG. if [ -f "/etc/podinfo/gha-render-devices" ]; then DEVICE_FLAG=$(cat /etc/podinfo/gha-render-devices) else DEVICE_FLAG="--device /dev/dri" fi docker pull ghcr.io/saienduri/sglang-aiter-v0.1.1:428 docker run -dt --user root --device=/dev/kfd $DEVICE_FLAG \ -v ${{ github.workspace }}:/sglang-checkout --ipc=host --group-add video \ --cap-add=SYS_PTRACE -e HF_TOKEN=${HF_TOKEN} --security-opt seccomp=unconfined \ -w /sglang-checkout --name ci_sglang \ ghcr.io/saienduri/sglang-aiter-v0.1.1:428 - name: Install dependencies run: | docker exec ci_sglang pip install --upgrade pip docker exec ci_sglang pip uninstall sgl-kernel -y || true docker exec -w /sglang-checkout/sgl-kernel ci_sglang bash -c "rm -f pyproject.toml && mv pyproject_rocm.toml pyproject.toml && python3 setup_rocm.py install" docker exec ci_sglang pip install -e "python[dev_hip]" docker exec -w / ci_sglang git clone https://github.com/merrymercy/human-eval.git docker exec -w /human-eval ci_sglang pip install -e . - name: Benchmark single latency timeout-minutes: 10 run: | docker exec -w /sglang-checkout/test/srt -e SGLANG_AMD_CI=1 -e SGLANG_IS_IN_CI=1 ci_sglang python3 -m unittest test_bench_one_batch.TestBenchOneBatch.test_bs1_small docker exec -w /sglang-checkout/test/srt -e SGLANG_AMD_CI=1 -e SGLANG_IS_IN_CI=1 ci_sglang python3 -m unittest test_bench_one_batch.TestBenchOneBatch.test_bs1_default - name: Benchmark online latency timeout-minutes: 10 run: | docker exec -w /sglang-checkout/test/srt -e SGLANG_AMD_CI=1 -e SGLANG_IS_IN_CI=1 ci_sglang python3 -m unittest test_bench_serving.TestBenchServing.test_online_latency_default - name: Benchmark offline throughput timeout-minutes: 10 run: | docker exec -w /sglang-checkout/test/srt -e SGLANG_AMD_CI=1 -e SGLANG_IS_IN_CI=1 ci_sglang python3 -m unittest test_bench_serving.TestBenchServing.test_offline_throughput_default - name: Benchmark offline throughput (Non-streaming, small batch size) timeout-minutes: 10 run: | docker exec -w /sglang-checkout/test/srt -e SGLANG_AMD_CI=1 -e SGLANG_IS_IN_CI=1 ci_sglang python3 -m unittest test_bench_serving.TestBenchServing.test_offline_throughput_non_stream_small_batch_size - name: Benchmark online latency (EAGLE) timeout-minutes: 10 run: | docker exec -w /sglang-checkout/test/srt -e SGLANG_AMD_CI=1 -e SGLANG_IS_IN_CI=1 ci_sglang python3 -m unittest test_bench_serving.TestBenchServing.test_online_latency_eagle performance-test-1-gpu-part-2-amd: if: (github.repository == 'sgl-project/sglang' || github.event_name == 'pull_request') && github.event.pull_request.draft == false runs-on: linux-mi300-gpu-1 steps: - name: Checkout code uses: actions/checkout@v4 - name: Setup docker run: | # Ensure GPU isolation if pod is part of kubernetes setup with DEVICE_FLAG. if [ -f "/etc/podinfo/gha-render-devices" ]; then DEVICE_FLAG=$(cat /etc/podinfo/gha-render-devices) else DEVICE_FLAG="--device /dev/dri" fi docker pull ghcr.io/saienduri/sglang-aiter-v0.1.1:428 docker run -dt --user root --device=/dev/kfd $DEVICE_FLAG \ -v ${{ github.workspace }}:/sglang-checkout --ipc=host --group-add video \ --cap-add=SYS_PTRACE -e HF_TOKEN=${HF_TOKEN} --security-opt seccomp=unconfined \ -w /sglang-checkout --name ci_sglang \ ghcr.io/saienduri/sglang-aiter-v0.1.1:428 - name: Install dependencies run: | docker exec ci_sglang pip install --upgrade pip docker exec ci_sglang pip uninstall sgl-kernel -y || true docker exec -w /sglang-checkout/sgl-kernel ci_sglang bash -c "rm -f pyproject.toml && mv pyproject_rocm.toml pyproject.toml && python3 setup_rocm.py install" docker exec ci_sglang pip install -e "python[dev_hip]" docker exec -w / ci_sglang git clone https://github.com/merrymercy/human-eval.git docker exec -w /human-eval ci_sglang pip install -e . - name: Benchmark offline throughput (w/o RadixAttention) timeout-minutes: 10 run: | docker exec -w /sglang-checkout/test/srt -e SGLANG_AMD_CI=1 -e SGLANG_IS_IN_CI=1 ci_sglang python3 -m unittest test_bench_serving.TestBenchServing.test_offline_throughput_without_radix_cache - name: Benchmark offline throughput (w/ Triton) timeout-minutes: 10 run: | docker exec -w /sglang-checkout/test/srt -e SGLANG_AMD_CI=1 -e SGLANG_IS_IN_CI=1 ci_sglang python3 -m unittest test_bench_serving.TestBenchServing.test_offline_throughput_with_triton_attention_backend - name: Benchmark offline throughput (w/ FP8) timeout-minutes: 10 run: | docker exec -w /sglang-checkout/test/srt -e SGLANG_AMD_CI=1 -e SGLANG_IS_IN_CI=1 ci_sglang python3 -m unittest test_bench_serving.TestBenchServing.test_offline_throughput_default_fp8 bench-test-2-gpu-amd: if: (github.repository == 'sgl-project/sglang' || github.event_name == 'pull_request') && github.event.pull_request.draft == false runs-on: linux-mi300-gpu-2 steps: - name: Checkout code uses: actions/checkout@v4 - name: Setup docker run: | # Ensure GPU isolation if pod is part of kubernetes setup with DEVICE_FLAG. if [ -f "/etc/podinfo/gha-render-devices" ]; then DEVICE_FLAG=$(cat /etc/podinfo/gha-render-devices) else DEVICE_FLAG="--device /dev/dri" fi docker pull ghcr.io/saienduri/sglang-aiter-v0.1.1:428 docker run -dt --user root --device=/dev/kfd $DEVICE_FLAG \ -v ${{ github.workspace }}:/sglang-checkout --ipc=host --group-add video \ --cap-add=SYS_PTRACE -e HF_TOKEN=${HF_TOKEN} --security-opt seccomp=unconfined \ -w /sglang-checkout --name ci_sglang \ ghcr.io/saienduri/sglang-aiter-v0.1.1:428 - name: Install dependencies run: | docker exec ci_sglang pip install --upgrade pip docker exec ci_sglang pip uninstall sgl-kernel -y || true docker exec -w /sglang-checkout/sgl-kernel ci_sglang bash -c "rm -f pyproject.toml && mv pyproject_rocm.toml pyproject.toml && python3 setup_rocm.py install" docker exec ci_sglang pip install -e "python[dev_hip]" docker exec -w / ci_sglang git clone https://github.com/merrymercy/human-eval.git docker exec -w /human-eval ci_sglang pip install -e . docker exec -w / ci_sglang mkdir -p /dummy-grok mkdir -p dummy-grok && wget https://sharkpublic.blob.core.windows.net/sharkpublic/sglang/dummy_grok.json -O dummy-grok/config.json docker cp ./dummy-grok ci_sglang:/ - name: Benchmark dummy grok (TP=2) timeout-minutes: 20 run: | docker exec -w /sglang-checkout/test/srt -e SGLANG_IS_IN_CI=1 ci_sglang python3 models/test_dummy_grok_models.py - name: Benchmark single latency (TP=2) timeout-minutes: 20 run: | docker exec -w /sglang-checkout/test/srt -e SGLANG_IS_IN_CI=1 -e SGLANG_AMD_CI=1 ci_sglang python3 -m unittest test_bench_one_batch.TestBenchOneBatch.test_moe_tp2_bs1 - name: Benchmark single latency + torch.compile (TP=2) timeout-minutes: 20 run: | docker exec -w /sglang-checkout/test/srt -e SGLANG_IS_IN_CI=1 ci_sglang python3 -m unittest test_bench_one_batch.TestBenchOneBatch.test_torch_compile_tp2_bs1 - name: Benchmark offline throughput (TP=2) timeout-minutes: 20 run: | docker exec -w /sglang-checkout/test/srt -e SGLANG_IS_IN_CI=1 -e SGLANG_AMD_CI=1 ci_sglang python3 -m unittest test_bench_serving.TestBenchServing.test_moe_offline_throughput_default - name: Benchmark offline throughput (w/o RadixAttention) (TP=2) timeout-minutes: 20 run: | docker exec -w /sglang-checkout/test/srt -e SGLANG_IS_IN_CI=1 -e SGLANG_AMD_CI=1 ci_sglang python3 -m unittest test_bench_serving.TestBenchServing.test_moe_offline_throughput_without_radix_cache finish: if: always() needs: [ accuracy-test-1-gpu-amd, mla-test-1-gpu-amd, bench-test-2-gpu-amd, accuracy-test-2-gpu-amd, performance-test-1-gpu-part-1-amd, performance-test-1-gpu-part-2-amd ] runs-on: ubuntu-latest steps: - name: Check all dependent job statuses run: | results=(${{ join(needs.*.result, ' ') }}) for result in "${results[@]}"; do if [ "$result" = "failure" ] || [ "$result" = "cancelled" ]; then echo "Job failed with result: $result" exit 1 fi done echo "All jobs completed successfully" exit 0