# SGLang CI Monitor > **Note**: This README.md is primarily generated by Claude 4 with some manual adjustments. A comprehensive toolkit to analyze CI failures and performance trends for the SGLang project. This toolkit includes two main tools: 1. **CI Analyzer** (`ci_analyzer.py`): Analyzes CI failures and provides detailed failure pattern analysis 2. **Performance Analyzer** (`ci_analyzer_perf.py`): Tracks performance metrics over time and generates trend charts ## Features ### CI Analyzer (`ci_analyzer.py`) - **Simple Analysis**: Analyze recent CI runs and identify failure patterns - **Category Classification**: Automatically categorize failures by type (unit-test, performance, etc.) - **Pattern Recognition**: Identify common failure patterns (timeouts, build failures, etc.) - **CI Links**: Direct links to recent failed CI runs for detailed investigation - **Last Success Tracking**: Track the last successful run for each failed job with PR information - **JSON Export**: Export detailed analysis data to JSON format ### Performance Analyzer (`ci_analyzer_perf.py`) - **Performance Tracking**: Monitor performance metrics across CI runs over time - **Automated Chart Generation**: Generate time-series charts for each performance metric - **Multi-Test Support**: Track performance for all test types (throughput, latency, accuracy) - **CSV Export**: Export performance data in structured CSV format - **Trend Analysis**: Visualize performance trends with interactive charts - **Comprehensive Metrics**: Track output throughput, E2E latency, TTFT, accept length, and more - **Time-Based Sampling**: Intelligent sampling strategy to cover extended time periods (up to 30 days) with limited API calls ### Common Features - **Automated Monitoring**: GitHub Actions workflow for continuous CI and performance monitoring ## Installation ### For CI Analyzer No additional dependencies required beyond Python standard library and `requests`: ```bash pip install requests ``` ### For Performance Analyzer Additional dependencies required for chart generation: ```bash pip install requests matplotlib pandas ``` ## Usage ### CI Analyzer #### Basic Usage ```bash # Replace YOUR_GITHUB_TOKEN with your actual token from https://github.com/settings/tokens python ci_analyzer.py --token YOUR_GITHUB_TOKEN ``` #### Advanced Usage ```bash # Analyze last 1000 runs python ci_analyzer.py --token YOUR_GITHUB_TOKEN --limit 1000 # Custom output file python ci_analyzer.py --token YOUR_GITHUB_TOKEN --limit 500 --output my_analysis.json ``` ### Performance Analyzer #### Basic Usage ```bash # Analyze performance trends from recent CI runs python ci_analyzer_perf.py --token YOUR_GITHUB_TOKEN ``` #### Advanced Usage ```bash # Analyze last 1000 PR Test runs (auto-enables uniform sampling for ~30 days coverage) python ci_analyzer_perf.py --token YOUR_GITHUB_TOKEN --limit 1000 # Custom output directory python ci_analyzer_perf.py --token YOUR_GITHUB_TOKEN --limit 500 --output-dir my_performance_data # Use sampling with 500 runs (will use sequential mode since < 500 threshold) python ci_analyzer_perf.py --token YOUR_GITHUB_TOKEN --limit 500 # Get ALL performance data within a specific date range (recommended for historical analysis) python ci_analyzer_perf.py --token YOUR_GITHUB_TOKEN --start-date 2024-12-01 --end-date 2024-12-31 # Get complete data for the last week python ci_analyzer_perf.py --token YOUR_GITHUB_TOKEN --start-date $(date -d '7 days ago' +%Y-%m-%d) --end-date $(date +%Y-%m-%d) # Upload results to GitHub repository for sharing python ci_analyzer_perf.py --token YOUR_GITHUB_TOKEN --limit 1000 --upload-to-github ``` **Important**: Make sure your GitHub token has `repo` and `workflow` permissions, otherwise you'll get 404 errors. ## Data Collection Strategies The Performance Analyzer offers multiple strategies for collecting performance data to suit different analysis needs. ### 1. Uniform Sampling Strategy **When to use**: Daily monitoring and trend analysis over extended periods. - **Automatically enabled** when `--limit >= 500` - **Disabled** for smaller limits (< 500) to maintain backward compatibility #### How it works: - Collects data uniformly across a 30-day period - Ensures even time distribution of samples - Provides consistent coverage for trend analysis #### Example with 1000 Runs: - **Time Range**: Last 30 days - **Distribution**: 1000 samples evenly distributed across the period - **Coverage**: ~33 samples per day on average ### 2. Date Range Collection **When to use**: Historical analysis, specific period investigation, or complete data collection. Use `--start-date` and `--end-date` parameters to get **ALL** CI runs within a specific time range. #### Features: - **Complete Data**: Gets every CI run in the specified range (no sampling) - **No Limit**: Ignores the `--limit` parameter - **Flexible Range**: Specify any date range you need - **Historical Analysis**: Perfect for investigating specific time periods #### Date Format: - Use `YYYY-MM-DD` format (e.g., `2024-12-01`) - Both parameters are optional: - Only `--start-date`: Gets all runs from that date to now - Only `--end-date`: Gets all runs from 30 days ago to that date - Both: Gets all runs in the specified range ### 3. Sequential Collection (Traditional) **When to use**: Quick checks or when you only need recent data. - **Default behavior** for `--limit < 500` - Gets the most recent CI runs in chronological order - Fast and simple for immediate analysis ### Comparison | Strategy | Use Case | Time Coverage | Data Completeness | API Efficiency | |----------|----------|---------------|-------------------|----------------| | **Uniform Sampling** | Daily monitoring, trends | ~30 days | Sampled | High | | **Date Range** | Historical analysis | Any range | Complete | Variable | | **Sequential** | Quick checks | 3-4 days | Complete (recent) | High | ### Benefits - **Flexible Analysis**: Choose the right strategy for your needs - **Extended Coverage**: Up to 30 days with sampling, unlimited with date ranges - **Complete Data**: Get every run in a specific period when needed - **API Efficiency**: Optimized for different use patterns ## Parameters ### CI Analyzer Parameters | Parameter | Default | Description | |-----------|---------|-------------| | `--token` | Required | GitHub Personal Access Token | | `--limit` | 100 | Number of CI runs to analyze | | `--output` | ci_analysis.json | Output JSON file for detailed data | ### Performance Analyzer Parameters | Parameter | Default | Description | |-----------|---------|-------------| | `--token` | Required | GitHub Personal Access Token | | `--limit` | 100 | Number of PR Test runs to analyze (ignored when using date range) | | `--output-dir` | performance_tables | Output directory for CSV tables and PNG charts | | `--start-date` | None | Start date for date range query (YYYY-MM-DD format) | | `--end-date` | None | End date for date range query (YYYY-MM-DD format) | | `--upload-to-github` | False | Upload results to sglang-bot/sglang-ci-data repository | ## Getting GitHub Token 1. Go to [GitHub Settings > Personal Access Tokens](https://github.com/settings/tokens) 2. Click "Generate new token" > "Generate new token (classic)" 3. **Important**: Select the following permissions: - `repo` (Full control of private repositories) - **Required for accessing repository data** - `workflow` (Update GitHub Action workflows) - **Required for reading CI/CD data** 4. Copy the generated token and use it as `YOUR_GITHUB_TOKEN` **Note**: Without the `repo` and `workflow` permissions, the tool will not be able to access CI run data and will return 404 errors.