import os import shutil import subprocess import unittest from unittest import mock from sglang.srt.utils import prepare_model, prepare_tokenizer class TestDownloadFromModelScope(unittest.TestCase): @classmethod def setUpClass(cls): cls.model = "iic/nlp_lstmcrf_word-segmentation_chinese-news" stat, output = subprocess.getstatusoutput("pip install modelscope") cls.with_modelscope_environ = {k: v for k, v in os.environ.items()} cls.with_modelscope_environ["SGLANG_USE_MODELSCOPE"] = "True" @classmethod def tearDownClass(cls): pass def test_prepare_model(self): from modelscope.utils.file_utils import get_model_cache_root model_cache_root = get_model_cache_root() if os.path.exists(model_cache_root): shutil.rmtree(model_cache_root) with mock.patch.dict(os.environ, self.with_modelscope_environ, clear=True): model_path = prepare_model(self.model) assert os.path.exists(os.path.join(model_path, "pytorch_model.bin")) def test_prepare_tokenizer(self): from modelscope.utils.file_utils import get_model_cache_root model_cache_root = get_model_cache_root() if os.path.exists(model_cache_root): shutil.rmtree(model_cache_root) with mock.patch.dict(os.environ, self.with_modelscope_environ, clear=True): tokenizer_path = prepare_tokenizer(self.model) assert not os.path.exists(os.path.join(tokenizer_path, "pytorch_model.bin")) assert os.path.exists(os.path.join(tokenizer_path, "config.json")) if __name__ == "__main__": unittest.main()