# SGLang Model Gateway High-performance model routing control and data plane for large-scale LLM deployments. The gateway orchestrates fleets of workers, balances traffic across HTTP and gRPC backends, and exposes OpenAI-compatible APIs with pluggable history storage and tool integrations—while remaining deeply optimized for the SGLang serving runtime. ## Overview - Unified control plane for registering, monitoring, and orchestrating prefill, decode, and regular workers across heterogeneous model fleets. - Data plane that routes requests across HTTP, PD (prefill/decode), gRPC, and OpenAI-compatible backends with shared reliability features. - Industry-first gRPC pipeline with native Rust tokenization, reasoning, and tool-call execution for high-throughput OpenAI-compatible serving. - Multi-model inference gateway mode (`--enable-igw`) that runs several routers at once and applies per-model policies. - Conversation, response, and chat-history connectors that centralize state at the router, enabling compliant sharing across models/MCP loops with in-memory, no-op, or Oracle ATP storage options. - Built-in reliability primitives: retries with exponential backoff, circuit breakers, token-bucket rate limiting, and queuing. - First-class observability with structured logging and Prometheus metrics. ### Architecture at a Glance **Control Plane** - Worker Manager validates workers, discovers capabilities, and keeps the registry in sync. - Job Queue serializes background operations (add/remove) and exposes status via `/workers/{url}`. - Background health checker and load monitor keep circuit breakers and policies informed. - Optional Kubernetes service discovery keeps the registry aligned with pods. **Data Plane** - SGLang HTTP routers for regular and PD (prefill/decode) traffic with policy-aware selection. - SGLang gRPC router and pipeline that stream tokenized requests through SRT gRPC workers with fully Rust tokenizer, reasoning parser, and tool parser implementations for maximal OpenAI API performance, supporting both single-stage and PD serving topologies. - OpenAI router that proxies OpenAI-style requests, responses, and conversations to remote vendors (OpenAI, xAI, Gemini, and other OpenAI-compatible providers) while preserving streaming/SSE semantics. - Router Manager coordinates multiple router implementations when IGW is enabled. - Resilience layer delivers token-bucket rate limiting, request queuing, retry executor, and per-worker circuit breakers to keep traffic flowing through failures. - Advanced load balancing with cache-aware request reuse, load-aware (power-of-two) selection, and per-model policy overrides. ## Feature Highlights - Multiple load balancing strategies (`random`, `round_robin`, `cache_aware`, `power_of_two`) with DP-aware scheduling. - Multi-model HTTP serving and inference gateway routing with model-specific policies. - Prefill/decode disaggregation, including bootstrap port handling and cache-aware merging. - gRPC routing with fully Rust tokenizer loading, reasoning parser selection, and tool parser integration for OpenAI-compatible endpoints—supporting streaming and non-streaming modes across DeepSeek, Llama, Kimi K2, Qwen, GPT-OSS, Mistral, Step-3, GLM4, and other reasoning-capable models. - OpenAI-compatible `/v1/chat/completions`, `/v1/responses`, `/v1/conversations`, `/v1/embeddings`, and `/v1/rerank` endpoints. - Native MCP client integration supporting all MCP transport protocols (STDIO, HTTP, SSE, and Streamable) for tool execution loops. - Pluggable history connectors: in-memory, disabled, or Oracle ATP (with pooling and credential support). - Reliability controls: retry with jitter, worker-scoped circuit breakers, token bucket limiter with optional queue, and cache flush APIs. - Service discovery for regular and PD workloads with independent selectors. - Prometheus metrics and structured tracing for every stage of routing. ## Documentation - **User Guide**: [docs.sglang.ai/advanced_features/router.html](https://docs.sglang.ai/advanced_features/router.html) - Additional guides, API references, and deployment patterns are continuously updated alongside SGLang releases. ## Installation ### Prerequisites - **Rust and Cargo** ```bash # Install rustup (Rust installer and version manager) curl --proto '=https' --tlsv1.2 -sSf https://sh.rustup.rs | sh # Reload shell environment source "$HOME/.cargo/env" # Verify installation rustc --version cargo --version ``` - **Python** with `pip` and virtualenv tooling available. ### Rust Binary ```bash # Build release binary cargo build --release ``` ### Python Package ```bash pip install maturin # Fast development mode (debug build, no wheel, instant) # Uses system OpenSSL (requires libssl-dev/openssl-devel) maturin develop # Production build (optimized, creates wheel) # Uses vendored OpenSSL (cross-platform compatibility) maturin build --release --features vendored-openssl pip install --force-reinstall dist/*.whl # Development build with system OpenSSL (faster) # Requires: apt install libssl-dev pkg-config (Ubuntu/Debian) # or: yum install openssl-devel (RHEL/CentOS) maturin build --release pip install --force-reinstall dist/*.whl ``` > **Note:** Use `maturin develop` for fast iteration during development (builds in debug mode and installs directly). Use `maturin build --release --features vendored-openssl` for production wheels with full optimizations (opt-level="z", lto="fat") and cross-platform compatibility. The package uses abi3 support for Python 3.8+ compatibility. ## Quick Start ### Regular HTTP Routing - **Rust binary** ```bash ./target/release/sglang-router \ --worker-urls http://worker1:8000 http://worker2:8000 \ --policy cache_aware ``` `cargo run --release -- …` provides the same behavior during development. - **Python launcher** ```bash python3 -m sglang_router.launch_router \ --worker-urls http://worker1:8000 http://worker2:8000 \ --policy cache_aware ``` ### Prefill/Decode Disaggregation (PD) - **Rust binary** ```bash ./target/release/sglang-router \ --pd-disaggregation \ --prefill http://prefill1:30001 9001 \ --prefill http://prefill2:30002 \ --decode http://decode1:30011 \ --decode http://decode2:30012 \ --policy cache_aware \ --prefill-policy cache_aware \ --decode-policy power_of_two ``` - **Python launcher** ```bash python3 -m sglang_router.launch_router \ --pd-disaggregation \ --prefill http://prefill1:30001 9001 \ --prefill http://prefill2:30002 \ --decode http://decode1:30011 \ --decode http://decode2:30012 \ --policy cache_aware ``` Prefill entries accept an optional bootstrap port. PD mode merges prefill metadata with decode outputs and streams results back to the client. ### Multi-Model Inference Gateway Enable IGW mode to route multiple models through a single router while applying per-model policies: ```bash ./target/release/sglang-router \ --enable-igw \ --policy cache_aware \ --max-concurrent-requests 512 # Register workers dynamically curl -X POST http://localhost:30000/workers \ -H "Content-Type: application/json" \ -d '{ "url": "http://worker-a:8000", "model_id": "mistral", "priority": 10, "labels": {"tier": "gold"} }' # Add another worker with a different model/policy hint curl -X POST http://localhost:30000/workers \ -H "Content-Type: application/json" \ -d '{ "url": "http://worker-b:8000", "model_id": "llama3", "priority": 20, "labels": {"policy": "power_of_two", "tier": "silver"} }' # Inspect registered workers curl http://localhost:30000/workers ``` Sample response (http workers): ```json { "workers": [ {"id":"http://0.0.0.0:31378","url":"http://0.0.0.0:31378","model_id":"mistral","priority":50,"cost":1.0,"worker_type":"regular","is_healthy":true,"load":0,"connection_mode":"Http"}, {"id":"http://0.0.0.0:34881","url":"http://0.0.0.0:34881","model_id":"llama3","priority":50,"cost":1.0,"worker_type":"regular","is_healthy":true,"load":0,"connection_mode":"Http"} ], "total": 2, "stats": { "prefill_count": 0, "decode_count": 0, "regular_count": 2 } } ``` Add more workers with the same API; include optional `labels` (for per-model policies) or `tokenizer_path` / `reasoning_parser` / `tool_parser` fields as needed. `/workers/{url}` exposes queued job status while background jobs finalize registration. ### gRPC Routing - **Rust binary** ```bash ./target/release/sglang-router \ --worker-urls grpc://worker-grpc-0:31001 grpc://worker-grpc-1:31002 \ --tokenizer-path /path/to/tokenizer.json \ --reasoning-parser deepseek-r1 \ --tool-call-parser json ``` - **Python router** ```bash python3 -m sglang_router.launch_router \ --worker-urls grpc://127.0.0.1:20000 \ --model-path meta-llama/Llama-3.1-8B-Instruct \ --host 0.0.0.0 \ --port 8080 ``` The gRPC router tokenizes inputs locally, supports tool-call parsing, and streams responses. It supports both regular HTTP-equivalent serving and PD (prefill/decode) serving when the worker registry contains PD workers. Provide `--model-path` or `--tokenizer-path` (HuggingFace ID or local directory) whenever connection mode resolves to gRPC. Use `--reasoning-parser` to select built-in reasoning pipelines (DeepSeek-R1, Qwen3, Step-3, GLM4, etc.) and `--tool-call-parser` for JSON/Pythonic/XML tool contracts in streaming or non-streaming modes. ### OpenAI Backend Mode Route requests to OpenAI or OpenAI-compatible endpoints: ```bash # Route to OpenAI API python3 -m sglang_router.launch_router \ --backend openai \ --worker-urls https://api.openai.com \ # Route to custom OpenAI-compatible endpoint (Gemini, xAI, etc.) python3 -m sglang_router.launch_router \ --backend openai \ --worker-urls http://my-openai-compatible-service:8000 \ ``` **Notes** - OpenAI backend mode acts as a proxy to a single remote endpoint; load balancing is not applied. - Provide exactly one `--worker-urls` entry per router instance. - The Rust binary supports the same flags (`./target/release/sglang-router --backend openai ...`). ### MCP Integration The SGL Model Gateway provides native Model Context Protocol (MCP) client integration, enabling tool calling across STDIO, SSE, and Streamable transports. MCP servers are configured via a YAML configuration file and registered at startup through the workflow engine. #### Basic Usage ```bash # Rust binary ./target/release/sglang-router \ --mcp-config-path /path/to/mcp-config.yaml \ --worker-urls http://worker1:8000 # Python launcher python3 -m sglang_router.launch_router \ --mcp-config-path /path/to/mcp-config.yaml \ --worker-urls http://worker1:8000 ``` #### MCP Configuration File Create an MCP configuration file to define servers, transports, and connection settings: ```yaml servers: - name: "filesystem" command: "npx" args: ["-y", "@modelcontextprotocol/server-filesystem", "/tmp"] required: false - name: "github" url: "https://api.github.com/mcp" token: "ghp_xxxxx" transport: "sse" required: false - name: "custom-tools" url: "https://tools.example.com/mcp" transport: "streamable" required: true pool: max_connections: 100 idle_timeout: 300 # seconds proxy: http: "http://proxy.internal:8080" https: "https://proxy.internal:8443" no_proxy: "localhost,127.0.0.1,*.internal" inventory: enable_refresh: true tool_ttl: 300 # seconds - how long tools are considered fresh refresh_interval: 300 # seconds - background refresh interval ``` #### Configuration Options **Server Configuration** (`servers` array): - `name`: Unique identifier for the MCP server - `command` + `args`: For STDIO transport (local process execution) - `url`: For SSE or Streamable transports (HTTP/HTTPS endpoints) - `token`: Optional authentication token for HTTP-based transports - `transport`: Protocol type (`"sse"` or `"streamable"`; STDIO is inferred from `command`) - `required`: If `true`, router fails to start if server is unreachable (default: `false`) - `envs`: Environment variables for STDIO processes (optional) - `proxy`: Per-server proxy override (set to `null` to bypass global proxy) **Connection Pool** (`pool`): - `max_connections`: Maximum pooled connections for dynamic servers (default: 100) - `idle_timeout`: Idle connection timeout in seconds before cleanup (default: 300) **Proxy Configuration** (`proxy`): - `http`/`https`: Proxy URLs for MCP server connections (not LLM traffic) - `no_proxy`: Comma-separated hosts to exclude from proxying (supports wildcards) - **Note**: Proxy settings are currently ignored for `streamable` transport. Use STDIO or SSE transports if proxy support is required. **Inventory Settings** (`inventory`): - `enable_refresh`: Enable automatic background refresh of tool inventory (default: true) - `tool_ttl`: Tool cache TTL in seconds - how long tools are considered fresh (default: 300) - `refresh_interval`: Background refresh interval in seconds - proactive inventory refresh (default: 300) #### Transport Types **STDIO** (Local Process): ```yaml name: "local-tools" command: "python" args: ["-m", "my_mcp_server"] envs: API_KEY: "secret" DEBUG: "true" ``` **SSE** (Server-Sent Events): ```yaml name: "remote-sse" url: "https://mcp.example.com/events" token: "bearer-token" transport: "sse" ``` **Streamable** (Bidirectional Streaming): ```yaml name: "streaming-tools" url: "https://mcp.example.com/stream" transport: "streamable" required: true ``` #### Server Lifecycle - MCP servers are registered via the workflow engine with retry logic (100 attempts, 2-hour timeout for STDIO servers) - Discovery phase identifies tools, prompts, and resources - Tool inventory is cached with configurable TTL and periodic refresh - Failed optional servers log warnings; required servers halt startup - Static servers (from config) are permanent; dynamic servers (per-request) use connection pooling Check Prometheus metrics for MCP activity (`mcp_*` metrics) and workflow job status via the admin API. ### Python Launcher (Router + Workers) Launch router and SGLang worker processes together; `launch_server` spins up workers (HTTP or gRPC) and the router in one shot. ```bash python3 -m sglang_router.launch_server --host 0.0.0.0 ``` Add flags as needed for production deployments: ```bash python3 -m sglang_router.launch_server \ --host 0.0.0.0 \ --port 8080 \ --model meta-llama/Llama-3.1-8B-Instruct \ --tp-size 1 \ --dp-size 8 \ --grpc-mode ``` Omit `--grpc-mode` to start HTTP workers; the router automatically configures worker URLs and schedules them based on the provided DP size. ### Mini Load Balancer (Debug) ```bash python3 -m sglang_router.launch_router \ --mini-lb \ --pd-disaggregation \ --prefill http://localhost:30001 \ --decode http://localhost:30011 ``` MiniLB forwards PD requests using simple random routing and is intended for local debugging only. ### Running Worker Servers Use upstream SGLang binaries to start dedicated worker processes. - **Prefill worker server (gRPC mode)**: ```bash python3 -m sglang.launch_server \ --model meta-llama/Llama-3.1-8B-Instruct \ --port 20000 \ --tp-size 1 \ --grpc-mode ``` Remove `--grpc-mode` for HTTP workers. Combine with the router commands above to register the worker via CLI flags or the control-plane API. ## Control Plane ### Worker Lifecycle & Job Queue - `JobQueue` handles asynchronous add/remove operations to avoid blocking clients. - `WorkerManager` inspects worker metadata (`/get_server_info`, `/get_model_info`), tracks load, and exposes `flush_cache` and `get_loads`. - Per-worker circuit breakers and health probes keep the registry healthy; load monitor feeds metrics to cache-aware and power-of-two policies. ### Administrative & Worker APIs | Method | Path | Description | |----------|------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------| | `POST` | `/workers` | Queue worker registration (prefill/decode/regular). Body matches `WorkerConfigRequest`. Returns `202 Accepted` while the job queue processes the request. | | `GET` | `/workers` | List workers with health, load, policy metadata, and queued job status. | | `GET` | `/workers/{url}` | Inspect a specific worker or job queue entry. | | `DELETE` | `/workers/{url}` | Queue worker removal. | | `POST` | `/add_worker` | Legacy immediate worker registration using query params. Returns synchronously. **Deprecated soon**—use `POST /workers` instead. | | `POST` | `/remove_worker` | Legacy immediate removal. **Deprecated soon**—use `DELETE /workers/{url}` instead. | | `GET` | `/list_workers` | Legacy list of worker URLs. **Deprecated soon**—use `GET /workers` instead. | | `POST` | `/flush_cache` | Trigger cache flush across HTTP workers with success/failure breakdown. | | `GET` | `/get_loads` | Sample current load reported by each worker. | All administrative routes inherit router API-key protection when `--api-key` is supplied. Job status includes `pending`, `processing`, and `failed` phases with timestamps. ### Service Discovery Enable Kubernetes discovery to reconcile workers automatically: ```bash ./target/release/sglang-router \ --service-discovery \ --selector app=sglang-worker role=inference \ --service-discovery-namespace sglang-system \ --service-discovery-port 8000 ``` PD mode accepts dedicated selectors: ```bash --pd-disaggregation \ --prefill-selector app=sglang component=prefill \ --decode-selector app=sglang component=decode \ --service-discovery ``` Prefill pods can expose bootstrap ports via the `sglang.ai/bootstrap-port` annotation. RBAC must allow `get`, `list`, and `watch` on pods. ## Data Plane ### Router Capabilities (HTTP & gRPC) Both router stacks: - Share load-balancing policies (random, round-robin, cache-aware, power-of-two) with DP-aware scheduling, retries, circuit breakers, and rate limiting. - Record metrics per request, track running load, and integrate with the router-wide policy registry. The HTTP router exposes the full OpenAI-compatible surface area (`/generate`, `/v1/chat/completions`, `/v1/completions`, `/v1/embeddings`, `/v1/responses`, `/v1/rerank`, etc.). The gRPC router delivers blazing-fast `/generate` and `/v1/chat/completions` today, with the remaining endpoints returning `501 Not Implemented` until their pipelines are finalised. #### HTTP Router specifics - **Regular router** handles classic single-stage workers with per-model policy overrides. - **Prefill/Decode router** coordinates disaggregated prefill and decode workers, merges metadata, and manages streaming fan-in. #### gRPC Router specifics - Industry-first fully Rust implementation of an OpenAI-compatible gRPC inference gateway, including tokenizer, reasoning parser, and tool parser execution in-process for maximum throughput. - Supports both single-stage and PD (prefill/decode) worker topologies; the router automatically selects the appropriate pipeline per model. - Provides the same `/v1/*` APIs as the HTTP router while streaming tokenized requests/responses directly to SRT gRPC workers. - Built-in reasoning parsers for DeepSeek, Qwen, Llama, Mistral, GPT-OSS, Step-3, GLM4, Kimi K2, and other structured-thought models. - Tool-call parsers for JSON, Pythonic, XML, and custom schemas with streaming and non-streaming execution loops. - Tokenizer factory supporting HuggingFace models, local tokenizer.json files, and chat template overrides (see `src/tokenizer`). - Explore the code paths in `src/reasoning_parser`, `src/tool_parser`, and `src/tokenizer` for the end-to-end Rust implementations that power gRPC mode. ### OpenAI Router - Proxies OpenAI-compatible chat completions and responses APIs, preserving headers and SSE streams end-to-end. - Supports `/v1/responses` background jobs with cancellation, deletion, and listing input items—enabling agentic, multi-turn orchestration without persisting data at remote vendor endpoints. - Conversation APIs (`/v1/conversations` and `/v1/conversations/{id}/items`) interact with the configured conversation storage backend for compliant chat-history management. Conversation state lives at the router tier, so the same history can drive different models or MCP loops without leaking data to upstream vendors. - Chat history, agentic multi-turn `/v1/responses`, and the native MCP client (STDIO/HTTP/SSE/Streamable transports) are designed to satisfy enterprise data-privacy requirements by keeping sensitive state within the router. ### Request Endpoints | Endpoint | Notes | |----------------------------------------------------------------------------------|------------------------------------------------------------| | `POST /generate` | SGLang generate API. | | `POST /v1/chat/completions` | OpenAI-compatible chat. Supports streaming and tool calls. | | `POST /v1/completions` | OpenAI-compatible text completions. | | `POST /v1/responses` | Create background responses, returns response IDs. | | `GET /v1/responses/{id}` | Retrieve stored responses. | | Conversation endpoints (`/v1/conversations`, `/v1/conversations/{id}`, `/v1/conversations/{id}/items`) | Manage chat history. | | `POST /v1/embeddings` | Forward embedding requests. | | `POST /v1/rerank`, `POST /rerank` | Ranking APIs. | Public health endpoints (`/liveness`, `/readiness`, `/health`, `/health_generate`) reflect registry state; readiness ensures PD workers are paired and IGW has at least one healthy route. ## Conversations, Responses, and Data Connectors - `--history-backend memory` (default) stores responses and conversations in-process. - `--history-backend none` disables persistence while keeping APIs. - `--history-backend oracle` uses Oracle Autonomous Database; provide credentials via flags or environment variables. - Conversation item storage mirrors the history backend (Oracle or memory). The same storage powers OpenAI `/responses` and conversation APIs. ### History Backend (OpenAI Router Mode) Store conversation and response data for tracking, debugging, or analytics. > **Note:** History backends are currently supported only when running with `--backend openai`. gRPC mode support for the `/v1/responses` API is planned. #### Available storage options - **Memory** (default): In-memory storage, fast but ephemeral. - **None**: No storage, minimal overhead. - **Oracle**: Persistent storage backed by Oracle Autonomous Database. ```bash # Memory backend (default) python3 -m sglang_router.launch_router \ --backend openai \ --worker-urls https://api.openai.com \ --history-backend memory # No storage for maximum performance python3 -m sglang_router.launch_router \ --backend openai \ --worker-urls https://api.openai.com \ --history-backend none # Oracle ATP backend (see configuration below) python3 -m sglang_router.launch_router \ --backend openai \ --worker-urls https://api.openai.com \ --history-backend oracle ``` #### Oracle configuration Install the Oracle Instant Client and set `LD_LIBRARY_PATH` accordingly. Choose **one** connection method: ```bash # Option 1: Full connection descriptor export ATP_DSN="(description=(address=(protocol=tcps)(port=1522)(host=adb.region.oraclecloud.com))(connect_data=(service_name=service_name)))" # Option 2: TNS alias (requires wallet) export ATP_TNS_ALIAS="sglroutertestatp_high" export ATP_WALLET_PATH="/path/to/wallet" ``` Provide database credentials and optional pool sizing: ```bash export ATP_USER="admin" export ATP_PASSWORD="YourPassword123" export ATP_POOL_MIN=4 export ATP_POOL_MAX=32 ``` Router flags map to these values: - `--oracle-dsn` (env: `ATP_DSN`) or `--oracle-tns-alias` with `--oracle-wallet-path`. - `--oracle-user` / `--oracle-password` (`ATP_USER` / `ATP_PASSWORD`). - `--oracle-wallet-path` (`ATP_WALLET_PATH`) when using TNS alias. - `--oracle-pool-min`, `--oracle-pool-max`, `--oracle-pool-timeout-secs`. Only one of `--oracle-dsn` or `--oracle-tns-alias` should be supplied. ## Reliability & Flow Control - **Retries**: Default max retries = 5 with exponential backoff (`--retry-max-retries`, `--retry-initial-backoff-ms`, `--retry-max-backoff-ms`, `--retry-backoff-multiplier`, `--retry-jitter-factor`). Retries trigger on 408/429/500/502/503/504. - **Circuit Breakers**: Per worker thresholds (`--cb-failure-threshold`, `--cb-success-threshold`, `--cb-timeout-duration-secs`, `--cb-window-duration-secs`). Disable via `--disable-circuit-breaker`. - **Rate Limiting**: Token bucket driven by `--max-concurrent-requests`. Set `--rate-limit-tokens-per-second` to override refill rate. Configure request queue via `--queue-size` and `--queue-timeout-secs`; queued requests observe FIFO order and respect cancellation. - **Health Checks**: Runtime probes via `--health-check-interval-secs`, `--health-check-timeout-secs`, failure/success thresholds, and `--health-check-endpoint`. - **Cache Management**: `/flush_cache` ensures LRU eviction when redeploying PD workers. ## Load Balancing Policies - `random`: uniform random worker selection. - `round_robin`: sequential rotation with atomic counters. - `cache_aware`: maintains a prefix tree of prompts to route repeat traffic and evens load with configurable thresholds (`--cache-threshold`, `--balance-abs-threshold`, `--balance-rel-threshold`, `--eviction-interval`, `--max-tree-size`). - `power_of_two`: chooses the lighter worker among two random candidates; integrates with `LoadMonitor`. Per-model overrides are available in PD mode (`--prefill-policy`, `--decode-policy`) and IGW mode via the worker registry. ## Observability - **Logging**: Structured tracing through `tracing` with optional file sink (`--log-dir`) and `--log-level` (`debug`, `info`, `warn`, `error`). - **Prometheus Metrics**: Enable with `--prometheus-host`/`--prometheus-port` (defaults to `0.0.0.0:29000`). Metrics cover request latency, retry behavior, circuit breaker states, worker health/load, queue depth, PD pipeline stats, tokenizer timings, and MCP activity. - **Request IDs**: Configurable headers via `--request-id-headers`; responses include `x-request-id`. - **CORS**: Set `--cors-allowed-origins` for browser access. ## Security ### Router and Worker API Keys - **Router API key (`--api-key`)** protects client access to router endpoints; all protected routes expect `Authorization: Bearer `. - Workers listed in `--worker-urls` inherit the router API key automatically. - When adding workers dynamically, provide explicit API keys via payload or query string; they do **not** inherit automatically. ```bash # Router and initial workers share the same key python3 -m sglang_router.launch_router \ --api-key "shared-api-key" \ --worker-urls http://worker1:8000 http://worker2:8000 # Adding a worker without key while router has one triggers a warning and leaves the worker unprotected curl -X POST http://localhost:8080/add_worker?url=http://worker3:8000 # Add worker with explicit key curl -X POST "http://localhost:8080/add_worker?url=http://worker3:8000&api_key=worker3-specific-key" ``` ### Security Configurations 1. **No Authentication** (default): Router and workers accept requests without keys—use only in trusted environments. 2. **Router-only Authentication**: Provide `--api-key`; clients must present the key, router accesses workers without credentials. 3. **Worker-only Authentication**: Router open to clients; each worker requires its own key. Supply keys when calling `/workers` or `/add_worker`. 4. **Full Authentication**: Set router API key and provide per-worker keys. Example: ```bash python3 -m sglang_router.launch_router --api-key "router-key" curl -H "Authorization: Bearer router-key" \ -X POST http://localhost:8080/add_worker?url=http://worker:8000&api_key=worker-key ``` ### Important Notes - Initial workers declared via CLI inherit the router key; dynamic workers must supply keys explicitly. - Router logs a warning when a worker is registered without a key while the router expects authentication. - When router and workers share the same key, still include the key when invoking dynamic registration APIs. ## Development & Testing ```bash # Build Rust components (debug mode, fast) cargo build # Run Rust tests cargo test # Fast Python development (rebuilds and installs in debug mode) maturin develop # Run Python tests pytest ``` For production builds, use `maturin build --release` to create optimized wheels. During development, `maturin develop` rebuilds and installs instantly without creating wheel files. Use `python -m sglang_router.launch_server` to co-launch router and SGLang workers in small clusters for local validation. --- SGLang Model Gateway continues to evolve alongside the core SGLang runtime. Contributions should keep CLI flags, documentation, and Python bindings in sync with the Rust implementation.