from functools import lru_cache from typing import Optional, Union import torch import torch.nn as nn # try: # from sgl_kernel import flash_ops # except: # raise ImportError("Can not import sgl_kernel. Please check your installation.") try: from ._fa4_interface import flash_attn_varlen_func as flash_attn_varlen_func_v4 except ImportError: flash_attn_varlen_func_v4 = None @lru_cache(maxsize=1) def is_fa3_supported(device=None) -> bool: # There some fa3 FYI # FA3 can fail without a enough shared memory for a some shapes, such as higher # hidden_dim or some special cases. # Right now, fa3 is supported for sm80/sm87 and sm86/sm89. The main different # Between sm80/sm87 and sm86/sm89 is the shared memory size. you can follow the link below for more information # https://docs.nvidia.com/cuda/cuda-c-programming-guide/#shared-memory-8-x # And for sgl-kernel right now, we can build fa3 on sm80/sm86/sm89/sm90a. # That means if you use A100/A*0/L20/L40/L40s/4090 you can use fa3. return (torch.version.cuda >= "12.3") and ( torch.cuda.get_device_capability(device)[0] == 9 or torch.cuda.get_device_capability(device)[0] == 8 ) def maybe_contiguous(x): return x.contiguous() if x is not None and x.stride(-1) != 1 else x def flash_attn_with_kvcache( q, k_cache, v_cache, k=None, v=None, qv=None, rotary_cos=None, rotary_sin=None, cache_seqlens: Optional[Union[(int, torch.Tensor)]] = None, cache_batch_idx: Optional[torch.Tensor] = None, cache_leftpad: Optional[torch.Tensor] = None, page_table: Optional[torch.Tensor] = None, cu_seqlens_q: Optional[torch.Tensor] = None, cu_seqlens_k_new: Optional[torch.Tensor] = None, max_seqlen_q: Optional[int] = None, rotary_seqlens: Optional[torch.Tensor] = None, q_descale: Optional[torch.Tensor] = None, k_descale: Optional[torch.Tensor] = None, v_descale: Optional[torch.Tensor] = None, softmax_scale=None, causal=False, window_size=(-1, -1), # -1 means infinite context window softcap=0.0, # 0.0 means deactivated rotary_interleaved=True, scheduler_metadata=None, num_splits=0, # Can be tuned for speed pack_gqa=None, # Can be tuned for speed sm_margin=0, # Can be tuned if some SMs are used for communication return_softmax_lse=False, sinks=None, ver=3, ): if ver == 4: raise NotImplementedError("haven't implemented flash_attn_with_kvcache for fa4") # HIP环境检测和回退 if hasattr(torch.version, 'hip') and torch.version.hip is not None: # 简单PyTorch回退,处理实际的张量形状 # q: [1, 4, 256], k_cache: [411528, 1, 1, 256], v_cache: [411528, 1, 1, 256] if softmax_scale is None: softmax_scale = (q.shape[-1]) ** (-0.5) # 重塑以匹配attention计算 q_reshaped = q.unsqueeze(1) # [1, 1, 4, 256] k_reshaped = k_cache.squeeze(1).squeeze(1) # [411528, 256] v_reshaped = v_cache.squeeze(1).squeeze(1) # [411528, 256] # 简单的点积attention scores = torch.matmul(q, k_reshaped.T) * softmax_scale # [1, 4, 411528] attn_weights = torch.softmax(scores, dim=-1) out = torch.matmul(attn_weights, v_reshaped) # [1, 4, 256] if return_softmax_lse: softmax_lse = torch.zeros(1, 4, 1, device=q.device) return out, softmax_lse return out # 原始sgl_kernel实现 assert k_cache.stride(-1) == 1, "k_cache must have contiguous last dimension" assert v_cache.stride(-1) == 1, "v_cache must have contiguous last dimension" if softmax_scale is None: softmax_scale = (q.shape[-1] + (qv.shape[-1] if qv is not None else 0)) ** (-0.5) if cache_seqlens is not None and isinstance(cache_seqlens, int): cache_seqlens = torch.full( (k_cache.shape[0],), cache_seqlens, dtype=torch.int32, device=k_cache.device ) cache_seqlens = maybe_contiguous(cache_seqlens) q, k_cache, k, v = [maybe_contiguous(x) for x in (q, k_cache, k, v)] v_cache = ( v_cache.contiguous() if v_cache.stride(-1) != 1 and v_cache.stride(-3) != 1 else v_cache ) cu_seqlens_q, cu_seqlens_k_new = [ maybe_contiguous(x) for x in (cu_seqlens_q, cu_seqlens_k_new) ] page_table, cache_batch_idx, cache_leftpad = [ maybe_contiguous(x) for x in (page_table, cache_batch_idx, cache_leftpad) ] rotary_cos, rotary_sin = [maybe_contiguous(x) for x in (rotary_cos, rotary_sin)] rotary_seqlens = maybe_contiguous(rotary_seqlens) out, softmax_lse, *rest = torch.ops.sgl_kernel.fwd.default( q, k_cache, v_cache, k, v, qv, None, # out cu_seqlens_q, None, # cu_seqlens_k cu_seqlens_k_new, None, # seqused_q cache_seqlens, max_seqlen_q, None, # max_seqlen_k page_table, cache_batch_idx, cache_leftpad, rotary_cos, rotary_sin, rotary_seqlens, q_descale, k_descale, v_descale, softmax_scale, causal, window_size[0], window_size[1], softcap, rotary_interleaved, scheduler_metadata, num_splits, pack_gqa, sm_margin, sinks, ) return (out, softmax_lse) if return_softmax_lse else out def flash_attn_varlen_func( q, k, v, cu_seqlens_q, cu_seqlens_k, max_seqlen_q, max_seqlen_k, seqused_q=None, seqused_k=None, softmax_scale=None, causal=False, qv=None, q_descale=None, k_descale=None, v_descale=None, window_size=(-1, -1), softcap=0.0, num_splits=1, pack_gqa=None, sm_margin=0, return_softmax_lse=False, sinks=None, ver=3, ): if ver == 4: assert ( flash_attn_varlen_func_v4 is not None ), "FA4 is not available, please check your installation." # Using `(-1, -1)` as no sliding window causes correctness issues for FA4. if window_size == (-1, -1): window_size = (None, None) return flash_attn_varlen_func_v4( q, k, v, cu_seqlens_q, cu_seqlens_k, # max_seqlen_q, # max_seqlen_k, seqused_q=seqused_q, seqused_k=seqused_k, softmax_scale=softmax_scale, causal=causal, # qv=qv, # q_descale=q_descale, # k_descale=k_descale, # v_descale=v_descale, window_size=window_size, softcap=softcap, # num_splits=num_splits, pack_gqa=pack_gqa, # sm_margin=sm_margin, return_softmax_lse=return_softmax_lse, learnable_sink=sinks, ) if not is_fa3_supported(): raise NotImplementedError( "flash_attn at sgl-kernel is only supported on sm90 and above" ) if softmax_scale is None: softmax_scale = (q.shape[-1] + (qv.shape[-1] if qv is not None else 0)) ** ( -0.5 ) out, softmax_lse, *rest = torch.ops.sgl_kernel.fwd.default( q, k, v, None, # k_new None, # v_new qv, # qv None, # out cu_seqlens_q, cu_seqlens_k, None, # cu_seqlens_k_new seqused_q, seqused_k, max_seqlen_q, max_seqlen_k, None, # page_table, None, # kv_batch_idx None, # leftpad_k None, # rotary cos None, # rotary sin None, # seqlens_rotary q_descale, k_descale, v_descale, softmax_scale, causal, window_size[0], window_size[1], softcap, is_rotary_interleaved=False, scheduler_metadata=None, num_splits=num_splits, pack_gqa=pack_gqa, sm_margin=sm_margin, sinks=sinks, ) return (out, softmax_lse, *rest) if return_softmax_lse else out