# Adapted from # https://github.com/vllm-project/vllm/blob/c7f2cf2b7f67bce5842fedfdba508440fe257375/vllm/model_executor/models/llama.py#L1 """Inference-only LLaMA model compatible with HuggingFace weights.""" from typing import Any, Dict, Iterable, Optional, Tuple import torch import tqdm from torch import nn from transformers import LlamaConfig from vllm.config import CacheConfig from vllm.distributed import ( get_tensor_model_parallel_rank, get_tensor_model_parallel_world_size, ) from vllm.model_executor.layers.activation import SiluAndMul from vllm.model_executor.layers.layernorm import RMSNorm from vllm.model_executor.layers.linear import ( MergedColumnParallelLinear, QKVParallelLinear, RowParallelLinear, ) from vllm.model_executor.layers.quantization.base_config import QuantizationConfig from vllm.model_executor.layers.rotary_embedding import get_rope from vllm.model_executor.layers.vocab_parallel_embedding import ( ParallelLMHead, VocabParallelEmbedding, ) from vllm.model_executor.model_loader.weight_utils import default_weight_loader from sglang.srt.layers.logits_processor import LogitsProcessor from sglang.srt.layers.radix_attention import RadixAttention from sglang.srt.managers.controller.model_runner import InputMetadata class LlamaMLP(nn.Module): def __init__( self, hidden_size: int, intermediate_size: int, hidden_act: str, quant_config: Optional[QuantizationConfig] = None, ) -> None: super().__init__() self.gate_up_proj = MergedColumnParallelLinear( hidden_size, [intermediate_size] * 2, bias=False, quant_config=quant_config, ) self.down_proj = RowParallelLinear( intermediate_size, hidden_size, bias=False, quant_config=quant_config, ) if hidden_act != "silu": raise ValueError( f"Unsupported activation: {hidden_act}. " "Only silu is supported for now." ) self.act_fn = SiluAndMul() def forward(self, x): gate_up, _ = self.gate_up_proj(x) x = self.act_fn(gate_up) x, _ = self.down_proj(x) return x class LlamaAttention(nn.Module): def __init__( self, hidden_size: int, num_heads: int, num_kv_heads: int, layer_id: int = 0, rope_theta: float = 10000, rope_scaling: Optional[Dict[str, Any]] = None, rope_is_neox_style: bool = True, max_position_embeddings: int = 8192, quant_config: Optional[QuantizationConfig] = None, ) -> None: super().__init__() self.hidden_size = hidden_size tp_size = get_tensor_model_parallel_world_size() self.total_num_heads = num_heads assert self.total_num_heads % tp_size == 0 self.num_heads = self.total_num_heads // tp_size self.total_num_kv_heads = num_kv_heads if self.total_num_kv_heads >= tp_size: # Number of KV heads is greater than TP size, so we partition # the KV heads across multiple tensor parallel GPUs. assert self.total_num_kv_heads % tp_size == 0 else: # Number of KV heads is less than TP size, so we replicate # the KV heads across multiple tensor parallel GPUs. assert tp_size % self.total_num_kv_heads == 0 self.num_kv_heads = max(1, self.total_num_kv_heads // tp_size) self.head_dim = hidden_size // self.total_num_heads self.q_size = self.num_heads * self.head_dim self.kv_size = self.num_kv_heads * self.head_dim self.scaling = self.head_dim**-0.5 self.rope_theta = rope_theta self.max_position_embeddings = max_position_embeddings self.qkv_proj = QKVParallelLinear( hidden_size, self.head_dim, self.total_num_heads, self.total_num_kv_heads, bias=False, quant_config=quant_config, ) self.o_proj = RowParallelLinear( self.total_num_heads * self.head_dim, hidden_size, bias=False, quant_config=quant_config, ) self.rotary_emb = get_rope( self.head_dim, rotary_dim=self.head_dim, max_position=max_position_embeddings, base=rope_theta, rope_scaling=rope_scaling, is_neox_style=rope_is_neox_style, ) self.attn = RadixAttention( self.num_heads, self.head_dim, self.scaling, num_kv_heads=self.num_kv_heads, layer_id=layer_id, ) def forward( self, positions: torch.Tensor, hidden_states: torch.Tensor, input_metadata: InputMetadata, ) -> torch.Tensor: qkv, _ = self.qkv_proj(hidden_states) q, k, v = qkv.split([self.q_size, self.kv_size, self.kv_size], dim=-1) q, k = self.rotary_emb(positions, q, k) attn_output = self.attn(q, k, v, input_metadata) output, _ = self.o_proj(attn_output) return output class LlamaDecoderLayer(nn.Module): def __init__( self, config: LlamaConfig, layer_id: int = 0, quant_config: Optional[QuantizationConfig] = None, ) -> None: super().__init__() self.hidden_size = config.hidden_size rope_theta = getattr(config, "rope_theta", 10000) rope_scaling = getattr(config, "rope_scaling", None) if rope_scaling is not None and getattr( config, "original_max_position_embeddings", None ): rope_scaling["original_max_position_embeddings"] = ( config.original_max_position_embeddings ) rope_is_neox_style = getattr(config, "rope_is_neox_style", True) max_position_embeddings = getattr(config, "max_position_embeddings", 8192) self.self_attn = LlamaAttention( hidden_size=self.hidden_size, num_heads=config.num_attention_heads, num_kv_heads=config.num_key_value_heads, layer_id=layer_id, rope_theta=rope_theta, rope_scaling=rope_scaling, rope_is_neox_style=rope_is_neox_style, max_position_embeddings=max_position_embeddings, quant_config=quant_config, ) self.mlp = LlamaMLP( hidden_size=self.hidden_size, intermediate_size=config.intermediate_size, hidden_act=config.hidden_act, quant_config=quant_config, ) self.input_layernorm = RMSNorm(config.hidden_size, eps=config.rms_norm_eps) self.post_attention_layernorm = RMSNorm( config.hidden_size, eps=config.rms_norm_eps ) def forward( self, positions: torch.Tensor, hidden_states: torch.Tensor, input_metadata: InputMetadata, residual: Optional[torch.Tensor], ) -> Tuple[torch.Tensor, torch.Tensor]: # Self Attention if residual is None: residual = hidden_states hidden_states = self.input_layernorm(hidden_states) else: hidden_states, residual = self.input_layernorm(hidden_states, residual) hidden_states = self.self_attn( positions=positions, hidden_states=hidden_states, input_metadata=input_metadata, ) # Fully Connected hidden_states, residual = self.post_attention_layernorm(hidden_states, residual) hidden_states = self.mlp(hidden_states) return hidden_states, residual class LlamaModel(nn.Module): def __init__( self, config: LlamaConfig, quant_config: Optional[QuantizationConfig] = None, ) -> None: super().__init__() self.config = config self.padding_idx = config.pad_token_id self.vocab_size = config.vocab_size self.embed_tokens = VocabParallelEmbedding( config.vocab_size, config.hidden_size, ) self.layers = nn.ModuleList( [ LlamaDecoderLayer(config, i, quant_config=quant_config) for i in range(config.num_hidden_layers) ] ) self.norm = RMSNorm(config.hidden_size, eps=config.rms_norm_eps) def forward( self, input_ids: torch.Tensor, positions: torch.Tensor, input_metadata: InputMetadata, input_embeds: torch.Tensor = None, ) -> torch.Tensor: if input_embeds is None: hidden_states = self.embed_tokens(input_ids) else: hidden_states = input_embeds residual = None for i in range(len(self.layers)): layer = self.layers[i] hidden_states, residual = layer( positions, hidden_states, input_metadata, residual, ) hidden_states, _ = self.norm(hidden_states, residual) return hidden_states class LlamaForCausalLM(nn.Module): def __init__( self, config: LlamaConfig, quant_config: Optional[QuantizationConfig] = None, cache_config: Optional[CacheConfig] = None, ) -> None: super().__init__() self.config = config self.quant_config = quant_config self.model = LlamaModel(config, quant_config=quant_config) self.lm_head = ParallelLMHead(config.vocab_size, config.hidden_size) self.logits_processor = LogitsProcessor(config) def forward( self, input_ids: torch.Tensor, positions: torch.Tensor, input_metadata: InputMetadata, input_embeds: torch.Tensor = None, ) -> torch.Tensor: hidden_states = self.model(input_ids, positions, input_metadata, input_embeds) return self.logits_processor( input_ids, hidden_states, self.lm_head.weight, input_metadata ) def load_weights(self, weights: Iterable[Tuple[str, torch.Tensor]]): stacked_params_mapping = [ # (param_name, shard_name, shard_id) ("qkv_proj", "q_proj", "q"), ("qkv_proj", "k_proj", "k"), ("qkv_proj", "v_proj", "v"), ("gate_up_proj", "gate_proj", 0), ("gate_up_proj", "up_proj", 1), ] params_dict = dict(self.named_parameters()) if get_tensor_model_parallel_rank() == 0: weights = tqdm.tqdm(weights, total=int(len(params_dict) * 1.5)) for name, loaded_weight in weights: if "rotary_emb.inv_freq" in name or "projector" in name: continue if "rotary_emb.cos_cached" in name or "rotary_emb.sin_cached" in name: # Models trained using ColossalAI may include these tensors in # the checkpoint. Skip them. continue for param_name, weight_name, shard_id in stacked_params_mapping: if weight_name not in name: continue name = name.replace(weight_name, param_name) # Skip loading extra bias for GPTQ models. if name.endswith(".bias") and name not in params_dict: continue if name.startswith("model.vision_tower") and name not in params_dict: continue param = params_dict[name] weight_loader = param.weight_loader weight_loader(param, loaded_weight, shard_id) break else: # Skip loading extra bias for GPTQ models. if name.endswith(".bias") and name not in params_dict: continue if name.startswith("model.vision_tower") and name not in params_dict: continue param = params_dict[name] weight_loader = getattr(param, "weight_loader", default_weight_loader) weight_loader(param, loaded_weight) EntryClass = LlamaForCausalLM