import argparse import json import time import answer_extraction import eval_utils from datasets import load_dataset import sglang as sgl from sglang.test.test_utils import ( add_common_sglang_args_and_parse, select_sglang_backend, ) from sglang.utils import dump_state_text @sgl.function def reasoning_gen(s, question: str): s += sgl.user( question + "\nPlease reason step by step, and put your final answer within \boxed{}." ) s += sgl.assistant( sgl.gen( "answer", ) ) def convert_dataset(path: str, question_key: str, answer_key: str, num_tries: int): raw_dataset = load_dataset(path) questions = [] answers = [] for data in raw_dataset["train"]: question = data[question_key] answer = data[answer_key] for _ in range(num_tries): questions.append({"question": question}) answers.append({"answer": answer}) return questions, answers def main(args): # Select backend sgl.set_default_backend(select_sglang_backend(args)) # Get dataset questions, answers = convert_dataset( args.data_path, args.question_key, args.answer_key, args.num_tries ) # Run requests tic = time.time() states = reasoning_gen.run_batch( questions, num_threads=args.parallel, progress_bar=True, temperature=0.6, max_new_tokens=32768, top_p=0.95, ) latency = time.time() - tic # Extract answers correct = 0 for i, state in enumerate(states): try: pred_answer = answer_extraction.extract_math_answer( questions[i]["question"], state["answer"], "limo" ) gt_answer = str(answers[i]["answer"]) # Use last answer if multiple were extracted pred_answer = ( pred_answer[-1] if isinstance(pred_answer, list) else pred_answer ) correct += 1 if eval_utils.math_equal(pred_answer, gt_answer) else 0 except Exception as e: print(f"Error extracting answer: {e}") pass # Calculate accuracy accuracy = correct / len(questions) print(f"Accuracy: {accuracy}") # Calculate output throughput num_output_tokens = sum( s.get_meta_info("answer")["completion_tokens"] for s in states ) output_throughput = num_output_tokens / latency print(f"Output throughput: {output_throughput} token/s") # Dump results dump_state_text(f"tmp_output_{args.backend}.txt", states) # Write results with open(args.result_file, "a") as fout: value = { "task": "limo", "backend": args.backend, "latency": round(latency, 3), "accuracy": round(accuracy, 3), "num_requests": len(questions), "other": { "num_questions": len(questions), "parallel": args.parallel, }, } fout.write(json.dumps(value) + "\n") if __name__ == "__main__": parser = argparse.ArgumentParser() parser.add_argument("--data-path", type=str, default="GAIR/LIMO") parser.add_argument("--question-key", type=str, default="question") parser.add_argument("--answer-key", type=str, default="answer") parser.add_argument("--num-tries", type=int, default=1) add_common_sglang_args_and_parse(parser) args = parser.parse_args() main(args)