""" Copyright 2023-2024 SGLang Team Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. """ """A scheduler that manages a tensor parallel GPU worker.""" import logging import os import threading import time import warnings from collections import deque from concurrent import futures from types import SimpleNamespace from typing import List, Optional import torch import zmq from sglang.global_config import global_config from sglang.srt.configs.model_config import ModelConfig from sglang.srt.hf_transformers_utils import get_processor, get_tokenizer from sglang.srt.layers.logits_processor import LogitsProcessorOutput from sglang.srt.managers.io_struct import ( AbortReq, BatchEmbeddingOut, BatchTokenIDOut, FlushCacheReq, GetMemPoolSizeReq, GetMemPoolSizeReqOutput, ProfileReq, TokenizedEmbeddingReqInput, TokenizedGenerateReqInput, UpdateWeightReqInput, UpdateWeightReqOutput, ) from sglang.srt.managers.schedule_batch import ( FINISH_ABORT, BaseFinishReason, ImageInputs, Req, ScheduleBatch, global_server_args_dict, ) from sglang.srt.managers.schedule_policy import ( AddReqResult, PrefillAdder, SchedulePolicy, ) from sglang.srt.managers.tp_worker import TpModelWorker from sglang.srt.managers.tp_worker_overlap_thread import TpModelWorkerClient from sglang.srt.mem_cache.chunk_cache import ChunkCache from sglang.srt.mem_cache.radix_cache import RadixCache from sglang.srt.metrics.collector import SchedulerMetricsCollector, SchedulerStats from sglang.srt.server_args import PortArgs, ServerArgs from sglang.srt.utils import ( broadcast_pyobj, configure_logger, crash_on_warnings, get_zmq_socket, kill_parent_process, set_random_seed, suppress_other_loggers, ) from sglang.utils import get_exception_traceback logger = logging.getLogger(__name__) # Test retract decode test_retract = os.getenv("SGLANG_TEST_RETRACT", "false") == "true" class Scheduler: """A scheduler that manages a tensor parallel GPU worker.""" def __init__( self, server_args: ServerArgs, port_args: PortArgs, gpu_id: int, tp_rank: int, dp_rank: Optional[int], ): # Parse args self.server_args = server_args self.tp_rank = tp_rank self.tp_size = server_args.tp_size self.schedule_policy = server_args.schedule_policy self.disable_jump_forward = server_args.disable_jump_forward self.lora_paths = server_args.lora_paths self.max_loras_per_batch = server_args.max_loras_per_batch self.enable_overlap = server_args.enable_overlap_schedule self.skip_tokenizer_init = server_args.skip_tokenizer_init self.enable_metrics = server_args.enable_metrics # Init inter-process communication context = zmq.Context(2) if self.tp_rank == 0 or self.server_args.enable_dp_attention: self.recv_from_tokenizer = get_zmq_socket( context, zmq.PULL, port_args.scheduler_input_ipc_name ) self.send_to_tokenizer = get_zmq_socket( context, zmq.PUSH, port_args.tokenizer_ipc_name ) if server_args.skip_tokenizer_init: # Directly send to the tokenizer/api self.send_to_detokenizer = get_zmq_socket( context, zmq.PUSH, port_args.tokenizer_ipc_name ) else: # Send to the detokenizer self.send_to_detokenizer = get_zmq_socket( context, zmq.PUSH, port_args.detokenizer_ipc_name ) else: self.recv_from_tokenizer = None self.send_to_tokenizer = SimpleNamespace(send_pyobj=lambda x: None) self.send_to_detokenizer = SimpleNamespace(send_pyobj=lambda x: None) # Init tokenizer self.model_config = ModelConfig( server_args.model_path, trust_remote_code=server_args.trust_remote_code, context_length=server_args.context_length, model_override_args=server_args.json_model_override_args, is_embedding=server_args.is_embedding, ) self.is_generation = self.model_config.is_generation if server_args.skip_tokenizer_init: self.tokenizer = self.processor = None else: if self.model_config.is_multimodal: self.processor = get_processor( server_args.tokenizer_path, tokenizer_mode=server_args.tokenizer_mode, trust_remote_code=server_args.trust_remote_code, ) self.tokenizer = self.processor.tokenizer else: self.tokenizer = get_tokenizer( server_args.tokenizer_path, tokenizer_mode=server_args.tokenizer_mode, trust_remote_code=server_args.trust_remote_code, ) # Launch a tensor parallel worker if self.enable_overlap: TpWorkerClass = TpModelWorkerClient else: TpWorkerClass = TpModelWorker self.tp_worker = TpWorkerClass( server_args=server_args, gpu_id=gpu_id, tp_rank=tp_rank, dp_rank=dp_rank, nccl_port=port_args.nccl_port, ) # Get token and memory info from the model worker ( self.max_total_num_tokens, self.max_prefill_tokens, self.max_running_requests, self.max_req_len, self.max_req_input_len, self.random_seed, self.device, worker_global_server_args_dict, _, _, _, ) = self.tp_worker.get_worker_info() self.tp_cpu_group = self.tp_worker.get_tp_cpu_group() self.pad_input_ids_func = self.tp_worker.get_pad_input_ids_func() global_server_args_dict.update(worker_global_server_args_dict) set_random_seed(self.random_seed) # Print debug info logger.info( f"max_total_num_tokens={self.max_total_num_tokens}, " f"max_prefill_tokens={self.max_prefill_tokens}, " f"max_running_requests={self.max_running_requests}, " f"context_len={self.model_config.context_len}" ) # Init memory pool and cache self.req_to_token_pool, self.token_to_kv_pool = self.tp_worker.get_memory_pool() if ( server_args.chunked_prefill_size is not None and server_args.disable_radix_cache ): self.tree_cache = ChunkCache( req_to_token_pool=self.req_to_token_pool, token_to_kv_pool=self.token_to_kv_pool, ) else: self.tree_cache = RadixCache( req_to_token_pool=self.req_to_token_pool, token_to_kv_pool=self.token_to_kv_pool, disable=server_args.disable_radix_cache, ) self.tree_cache_metrics = {"total": 0, "hit": 0} self.policy = SchedulePolicy(self.schedule_policy, self.tree_cache) # Init running status self.waiting_queue: List[Req] = [] self.running_batch: Optional[ScheduleBatch] = None self.cur_batch: Optional[ScheduleBatch] = None self.forward_ct = 0 self.forward_ct_decode = 0 self.num_generated_tokens = 0 self.last_decode_stats_tic = time.time() self.stream_interval = server_args.stream_interval # Init chunked prefill self.chunked_prefill_size = server_args.chunked_prefill_size self.being_chunked_req = None self.is_mixed_chunk = ( self.chunked_prefill_size is not None and server_args.enable_mixed_chunk ) # Init the grammar backend for constrained generation self.grammar_queue: List[Req] = [] if not server_args.skip_tokenizer_init: if server_args.grammar_backend == "outlines": from sglang.srt.constrained.outlines_backend import ( OutlinesGrammarBackend, ) self.grammar_backend = OutlinesGrammarBackend( self.tokenizer, whitespace_pattern=server_args.constrained_json_whitespace_pattern, allow_jump_forward=not server_args.disable_jump_forward, ) elif server_args.grammar_backend == "xgrammar": from sglang.srt.constrained.xgrammar_backend import ( XGrammarGrammarBackend, ) self.grammar_backend = XGrammarGrammarBackend( self.tokenizer, vocab_size=self.model_config.vocab_size ) else: raise ValueError( f"Invalid grammar backend: {server_args.grammar_backend}" ) else: self.grammar_backend = None # Init new token estimation assert ( server_args.schedule_conservativeness >= 0 ), "Invalid schedule_conservativeness" self.init_new_token_ratio = min( global_config.default_init_new_token_ratio * server_args.schedule_conservativeness, 1.0, ) self.min_new_token_ratio = min( self.init_new_token_ratio * global_config.default_min_new_token_ratio_factor, 1.0, ) self.new_token_ratio_decay = ( self.init_new_token_ratio - self.min_new_token_ratio ) / global_config.default_new_token_ratio_decay_steps self.new_token_ratio = self.init_new_token_ratio self.batch_is_full = False # Init watchdog thread self.watchdog_timeout = server_args.watchdog_timeout t = threading.Thread(target=self.watchdog_thread, daemon=True) t.start() # Init profiler if os.getenv("SGLANG_TORCH_PROFILER_DIR", "") == "": self.profiler = None else: self.torch_profiler_trace_dir = os.getenv("SGLANG_TORCH_PROFILER_DIR") logger.info( "Profiling enabled. Traces will be saved to: %s", self.torch_profiler_trace_dir, ) self.profiler = torch.profiler.profile( activities=[ torch.profiler.ProfilerActivity.CPU, torch.profiler.ProfilerActivity.CUDA, ], with_stack=True, ) # Init metrics stats self.stats = SchedulerStats() if self.enable_metrics: self.metrics_collector = SchedulerMetricsCollector( labels={ "model_name": self.server_args.served_model_name, # TODO: Add lora name/path in the future, }, ) def watchdog_thread(self): self.watchdog_last_forward_ct = 0 self.watchdog_last_time = time.time() while True: if self.cur_batch is not None: if self.watchdog_last_forward_ct == self.forward_ct: if time.time() > self.watchdog_last_time + self.watchdog_timeout: logger.error(f"Watchdog timeout ({self.watchdog_timeout=})") break else: self.watchdog_last_forward_ct = self.forward_ct self.watchdog_last_time = time.time() time.sleep(self.watchdog_timeout / 2) kill_parent_process() @torch.no_grad() def event_loop_normal(self): """A normal blocking scheduler loop.""" self.last_batch = None while True: recv_reqs = self.recv_requests() self.process_input_requests(recv_reqs) batch = self.get_next_batch_to_run() if self.server_args.enable_dp_attention: batch = self.prepare_dp_attn_batch(batch) self.cur_batch = batch if batch: result = self.run_batch(batch) self.process_batch_result(batch, result) # Decode multiple steps to reduce the overhead if batch.forward_mode.is_decode(): for _ in range(self.server_args.num_continuous_decode_steps - 1): if not self.running_batch: break self.update_running_batch() if not self.running_batch: break if self.server_args.enable_dp_attention: batch = self.prepare_dp_attn_batch(batch) result = self.run_batch(batch) self.process_batch_result(batch, result) else: self.check_memory() self.new_token_ratio = self.init_new_token_ratio self.last_batch = batch @torch.no_grad() def event_loop_overlap(self): """A scheduler loop that overlaps the CPU processing and GPU computation.""" result_queue = deque() self.last_batch = None self.running_batch = None while True: recv_reqs = self.recv_requests() self.process_input_requests(recv_reqs) batch = self.get_next_batch_to_run() self.cur_batch = batch if batch: # We need a stream synchronization here. Otherwise, there will be cuda illegal memory access errors. _ = batch.seq_lens[0].item() result = self.run_batch(batch) result_queue.append((batch.copy(), result)) if self.last_batch: tmp_batch, tmp_result = result_queue.popleft() self.process_batch_result(tmp_batch, tmp_result) elif batch is None: self.check_memory() self.new_token_ratio = self.init_new_token_ratio self.last_batch = batch def prepare_dp_attn_batch(self, local_batch: ScheduleBatch): # Check if other DP workers have running batches if local_batch is None: num_tokens = 0 elif local_batch.forward_mode.is_decode(): num_tokens = local_batch.batch_size() else: num_tokens = local_batch.extend_num_tokens local_num_tokens = torch.tensor([num_tokens], dtype=torch.int64) global_num_tokens = torch.empty(self.tp_size, dtype=torch.int64) torch.distributed.all_gather_into_tensor( global_num_tokens, local_num_tokens, group=self.tp_cpu_group, ) if local_batch is None and global_num_tokens.max().item() > 0: local_batch = self.get_idle_batch() if local_batch is not None: local_batch.global_num_tokens = global_num_tokens.tolist() # Check forward mode for cuda graph if not self.server_args.disable_cuda_graph: forward_mode_state = torch.tensor( ( 1 if local_batch.forward_mode.is_decode() or local_batch.forward_mode.is_idle() else 0 ), dtype=torch.int32, ) torch.distributed.all_reduce( forward_mode_state, op=torch.distributed.ReduceOp.MIN, group=self.tp_cpu_group, ) local_batch.can_run_dp_cuda_graph = forward_mode_state.item() == 1 return local_batch def get_idle_batch(self): idle_batch = ScheduleBatch.init_new( [], self.req_to_token_pool, self.token_to_kv_pool, self.tree_cache, self.model_config, ) idle_batch.prepare_for_idle() return idle_batch def recv_requests(self): if self.tp_rank == 0 or self.server_args.enable_dp_attention: recv_reqs = [] while True: try: recv_req = self.recv_from_tokenizer.recv_pyobj(zmq.NOBLOCK) except zmq.ZMQError: break recv_reqs.append(recv_req) else: recv_reqs = None if self.tp_size != 1 and not self.server_args.enable_dp_attention: recv_reqs = broadcast_pyobj(recv_reqs, self.tp_rank, self.tp_cpu_group) return recv_reqs def process_input_requests(self, recv_reqs: List): for recv_req in recv_reqs: if isinstance(recv_req, TokenizedGenerateReqInput): self.handle_generate_request(recv_req) elif isinstance(recv_req, TokenizedEmbeddingReqInput): self.handle_embedding_request(recv_req) elif isinstance(recv_req, FlushCacheReq): self.flush_cache() elif isinstance(recv_req, AbortReq): self.abort_request(recv_req) elif isinstance(recv_req, UpdateWeightReqInput): success, message = self.update_weights(recv_req) self.send_to_tokenizer.send_pyobj( UpdateWeightReqOutput(success, message) ) elif isinstance(recv_req, ProfileReq): if recv_req == ProfileReq.START_PROFILE: self.start_profile() else: self.stop_profile() elif isinstance(recv_req, GetMemPoolSizeReq): self.send_to_tokenizer.send_pyobj( GetMemPoolSizeReqOutput(self.max_total_num_tokens) ) else: raise ValueError(f"Invalid request: {recv_req}") def handle_generate_request( self, recv_req: TokenizedGenerateReqInput, ): req = Req( recv_req.rid, recv_req.input_text, recv_req.input_ids, recv_req.sampling_params, lora_path=recv_req.lora_path, ) req.tokenizer = self.tokenizer # Image inputs if recv_req.image_inputs is not None: req.image_inputs = ImageInputs.from_dict( recv_req.image_inputs, self.model_config.vocab_size ) req.origin_input_ids = self.pad_input_ids_func( req.origin_input_ids_unpadded, req.image_inputs ) req.return_logprob = recv_req.return_logprob req.top_logprobs_num = recv_req.top_logprobs_num req.stream = recv_req.stream req.logprob_start_len = recv_req.logprob_start_len if req.logprob_start_len == -1: # By default, only return the logprobs for output tokens req.logprob_start_len = len(recv_req.input_ids) - 1 # Truncate prompts that are too long if len(req.origin_input_ids) > self.max_req_input_len: logger.warning( "Request length is longer than the KV cache pool size or " "the max context length. Truncated!!!" ) req.origin_input_ids = req.origin_input_ids[: self.max_req_input_len] req.sampling_params.max_new_tokens = min( ( req.sampling_params.max_new_tokens if req.sampling_params.max_new_tokens is not None else 1 << 30 ), self.max_req_len - len(req.origin_input_ids) - 1, ) # Init grammar cache for this request add_to_grammar_queue = False if ( req.sampling_params.json_schema is not None or req.sampling_params.regex is not None ): assert self.grammar_backend is not None if req.sampling_params.json_schema is not None: key = ("json", req.sampling_params.json_schema) elif req.sampling_params.regex is not None: key = ("regex", req.sampling_params.regex) req.grammar = self.grammar_backend.get_cached_value(key) if not req.grammar: req.grammar = self.grammar_backend.get_future_value(key) add_to_grammar_queue = True if add_to_grammar_queue: self.grammar_queue.append(req) else: self.waiting_queue.append(req) def handle_embedding_request( self, recv_req: TokenizedEmbeddingReqInput, ): req = Req( recv_req.rid, recv_req.input_text, recv_req.input_ids, recv_req.sampling_params, ) req.tokenizer = self.tokenizer # Truncate prompts that are too long if len(req.origin_input_ids) >= self.max_req_input_len: logger.warning( "Request length is longer than the KV cache pool size or " "the max context length. Truncated!!!" ) req.origin_input_ids = req.origin_input_ids[: self.max_req_input_len] self.waiting_queue.append(req) def log_prefill_stats(self, adder, can_run_list, running_bs, has_inflight): if isinstance(self.tree_cache, RadixCache): self.tree_cache_metrics["total"] += ( adder.log_input_tokens + adder.log_hit_tokens ) / 10**9 self.tree_cache_metrics["hit"] += (adder.log_hit_tokens) / 10**9 tree_cache_hit_rate = ( self.tree_cache_metrics["hit"] / self.tree_cache_metrics["total"] ) else: tree_cache_hit_rate = 0.0 num_used = self.max_total_num_tokens - ( self.token_to_kv_pool.available_size() + self.tree_cache.evictable_size() ) logger.info( f"Prefill batch. " f"#new-seq: {len(can_run_list)}, " f"#new-token: {adder.log_input_tokens}, " f"#cached-token: {adder.log_hit_tokens}, " f"cache hit rate: {100.0 * tree_cache_hit_rate:.2f}%, " f"token usage: {num_used / self.max_total_num_tokens:.2f}, " f"#running-req: {running_bs}, " f"#queue-req: {len(self.waiting_queue) + has_inflight}" ) if self.enable_metrics: self.stats.num_running_reqs = running_bs self.stats.num_used_tokens = num_used self.stats.token_usage = round(num_used / self.max_total_num_tokens, 2) self.stats.num_queue_reqs = len(self.waiting_queue) + has_inflight self.stats.cache_hit_rate = tree_cache_hit_rate self.metrics_collector.log_stats(self.stats) def log_decode_stats(self): num_used = self.max_total_num_tokens - ( self.token_to_kv_pool.available_size() + self.tree_cache.evictable_size() ) gen_throughput = self.num_generated_tokens / ( time.time() - self.last_decode_stats_tic ) self.num_generated_tokens = 0 self.last_decode_stats_tic = time.time() num_running_reqs = len(self.running_batch.reqs) if self.running_batch else 0 logger.info( f"Decode batch. " f"#running-req: {num_running_reqs}, " f"#token: {num_used}, " f"token usage: {num_used / self.max_total_num_tokens:.2f}, " f"gen throughput (token/s): {gen_throughput:.2f}, " f"#queue-req: {len(self.waiting_queue)}" ) if self.enable_metrics: self.stats.num_running_reqs = num_running_reqs self.stats.num_used_tokens = num_used self.stats.token_usage = num_used / self.max_total_num_tokens self.stats.gen_throughput = gen_throughput self.stats.num_queue_reqs = len(self.waiting_queue) self.metrics_collector.log_stats(self.stats) def check_memory(self): available_size = ( self.token_to_kv_pool.available_size() + self.tree_cache.evictable_size() ) if available_size != self.max_total_num_tokens: msg = ( "KV cache pool leak detected!" f"{available_size=}, {self.max_total_num_tokens=}\n" ) warnings.warn(msg) if crash_on_warnings(): raise ValueError(msg) if len(self.req_to_token_pool.free_slots) != self.req_to_token_pool.size: msg = ( "Memory pool leak detected!" f"available_size={len(self.req_to_token_pool.free_slots)}, " f"total_size={self.req_to_token_pool.size}\n" ) warnings.warn(msg) if crash_on_warnings(): raise ValueError(msg) def get_next_batch_to_run(self): # Merge the prefill batch into the running batch if ( self.last_batch and not self.last_batch.forward_mode.is_decode() and not self.last_batch.is_empty() ): if self.being_chunked_req: self.last_batch.filter_batch(being_chunked_req=self.being_chunked_req) self.tree_cache.cache_unfinished_req(self.being_chunked_req) # Inflight request keeps its rid but will get a new req_pool_idx. self.req_to_token_pool.free(self.being_chunked_req.req_pool_idx) self.batch_is_full = False if not self.last_batch.is_empty(): if self.running_batch is None: self.running_batch = self.last_batch else: self.running_batch.merge_batch(self.last_batch) # Prefill first new_batch = self.get_new_batch_prefill() if new_batch is not None: return new_batch # Check memory if self.running_batch is None: return # Run decode before_bs = self.running_batch.batch_size() self.update_running_batch() if not self.running_batch: self.batch_is_full = False return None if before_bs != self.running_batch.batch_size(): self.batch_is_full = False return self.running_batch def get_new_batch_prefill(self) -> Optional[ScheduleBatch]: # Check if the grammar is ready in the grammar queue if self.grammar_queue: self.move_ready_grammar_requests() # Handle the cases where prefill is not allowed if ( self.batch_is_full or len(self.waiting_queue) == 0 ) and self.being_chunked_req is None: return None running_bs = len(self.running_batch.reqs) if self.running_batch else 0 if running_bs >= self.max_running_requests: self.batch_is_full = True return None # Get priority queue prefix_computed = self.policy.calc_priority(self.waiting_queue) # Prefill policy adder = PrefillAdder( self.tree_cache, self.running_batch, self.new_token_ratio, self.token_to_kv_pool.available_size() + self.tree_cache.evictable_size(), self.max_prefill_tokens, self.chunked_prefill_size, running_bs if self.is_mixed_chunk else 0, ) has_inflight = self.being_chunked_req is not None if has_inflight: self.being_chunked_req.init_next_round_input() self.being_chunked_req = adder.add_inflight_req(self.being_chunked_req) if self.lora_paths: lora_set = ( set([req.lora_path for req in self.running_batch.reqs]) if self.running_batch is not None else set([]) ) # Get requests from the waiting queue to a new prefill batch for req in self.waiting_queue: if ( self.lora_paths and len( lora_set | set([req.lora_path for req in adder.can_run_list]) | set([req.lora_path]) ) > self.max_loras_per_batch ): self.batch_is_full = True break if running_bs + len(adder.can_run_list) >= self.max_running_requests: self.batch_is_full = True break req.init_next_round_input(None if prefix_computed else self.tree_cache) res = adder.add_one_req(req) if res != AddReqResult.CONTINUE: if res == AddReqResult.NO_TOKEN: self.batch_is_full = True break # Update waiting queue can_run_list = adder.can_run_list if len(can_run_list) == 0: return None self.waiting_queue = [ x for x in self.waiting_queue if x not in set(can_run_list) ] if adder.new_inflight_req is not None: assert self.being_chunked_req is None self.being_chunked_req = adder.new_inflight_req if self.being_chunked_req: self.being_chunked_req.is_being_chunked += 1 # Print stats if self.tp_rank == 0: self.log_prefill_stats(adder, can_run_list, running_bs, has_inflight) # Create a new batch new_batch = ScheduleBatch.init_new( can_run_list, self.req_to_token_pool, self.token_to_kv_pool, self.tree_cache, self.model_config, ) new_batch.prepare_for_extend() # Mixed-style chunked prefill if self.is_mixed_chunk and self.running_batch is not None: self.running_batch.filter_batch() if not self.running_batch.is_empty(): self.running_batch.prepare_for_decode(self.enable_overlap) new_batch.mix_with_running(self.running_batch) new_batch.decoding_reqs = self.running_batch.reqs self.running_batch = None else: new_batch.decoding_reqs = None return new_batch def update_running_batch(self): """Update the current running decoding batch.""" global test_retract batch = self.running_batch batch.filter_batch() if batch.is_empty(): self.running_batch = None return # Check if decode out of memory if not batch.check_decode_mem() or (test_retract and batch.batch_size() > 10): old_ratio = self.new_token_ratio retracted_reqs, new_token_ratio = batch.retract_decode() self.new_token_ratio = new_token_ratio logger.info( "Decode out of memory happened. " f"#retracted_reqs: {len(retracted_reqs)}, " f"#new_token_ratio: {old_ratio:.4f} -> {self.new_token_ratio:.4f}" ) self.waiting_queue.extend(retracted_reqs) else: self.new_token_ratio = max( self.new_token_ratio - self.new_token_ratio_decay, self.min_new_token_ratio, ) # Check for jump-forward if not self.disable_jump_forward: jump_forward_reqs = batch.check_for_jump_forward(self.pad_input_ids_func) self.waiting_queue.extend(jump_forward_reqs) if batch.is_empty(): self.running_batch = None return # Update batch tensors batch.prepare_for_decode(self.enable_overlap) def run_batch(self, batch: ScheduleBatch): """Run a batch.""" self.forward_ct += 1 if self.is_generation: model_worker_batch = batch.get_model_worker_batch() if batch.forward_mode.is_decode() or batch.extend_num_tokens != 0: logits_output, next_token_ids = self.tp_worker.forward_batch_generation( model_worker_batch ) elif batch.forward_mode.is_idle(): model_worker_batch = batch.get_model_worker_batch() self.tp_worker.forward_batch_idle(model_worker_batch) return else: logits_output = None if self.skip_tokenizer_init: next_token_ids = torch.full( (batch.batch_size(),), self.tokenizer.eos_token_id ) else: next_token_ids = torch.full((batch.batch_size(),), 0) batch.output_ids = next_token_ids ret = logits_output, next_token_ids, model_worker_batch.bid else: # embedding or reward model assert batch.extend_num_tokens != 0 model_worker_batch = batch.get_model_worker_batch() embeddings = self.tp_worker.forward_batch_embedding(model_worker_batch) ret = embeddings, model_worker_batch.bid return ret def process_batch_result(self, batch: ScheduleBatch, result): if batch.forward_mode.is_idle(): return if batch.forward_mode.is_decode(): self.process_batch_result_decode(batch, result) if batch.is_empty(): self.running_batch = None else: self.process_batch_result_prefill(batch, result) def process_batch_result_prefill(self, batch: ScheduleBatch, result): if self.is_generation: logits_output, next_token_ids, bid = result if self.enable_overlap: logits_output, next_token_ids = self.tp_worker.resolve_batch_result(bid) else: # Move next_token_ids and logprobs to cpu if batch.return_logprob: logits_output.next_token_logprobs = ( logits_output.next_token_logprobs[ torch.arange(len(next_token_ids), device=self.device), next_token_ids, ].tolist() ) logits_output.input_token_logprobs = ( logits_output.input_token_logprobs.tolist() ) logits_output.normalized_prompt_logprobs = ( logits_output.normalized_prompt_logprobs.tolist() ) next_token_ids = next_token_ids.tolist() # Check finish conditions logprob_pt = 0 for i, req in enumerate(batch.reqs): if req.is_retracted: continue if req.is_being_chunked <= 0: # Inflight reqs' prefill is not finished req.completion_tokens_wo_jump_forward += 1 req.output_ids.append(next_token_ids[i]) req.check_finished() if req.finished(): self.tree_cache.cache_finished_req(req) elif not batch.decoding_reqs or req not in batch.decoding_reqs: self.tree_cache.cache_unfinished_req(req) if req.grammar is not None: req.grammar.accept_token(next_token_ids[i]) if req.return_logprob: logprob_pt += self.add_logprob_return_values( i, req, logprob_pt, next_token_ids, logits_output ) else: req.is_being_chunked -= 1 else: # embedding or reward model embeddings, bid = result embeddings = embeddings.tolist() # Check finish conditions for i, req in enumerate(batch.reqs): if req.is_retracted: continue req.embedding = embeddings[i] if req.is_being_chunked > 0: req.is_being_chunked -= 1 else: # Inflight reqs' prefill is not finished # dummy output token for embedding models req.output_ids.append(0) req.check_finished() if req.finished(): self.tree_cache.cache_finished_req(req) else: self.tree_cache.cache_unfinished_req(req) self.stream_output(batch.reqs) def process_batch_result_decode(self, batch: ScheduleBatch, result): logits_output, next_token_ids, bid = result self.num_generated_tokens += len(batch.reqs) if self.enable_overlap: logits_output, next_token_ids = self.tp_worker.resolve_batch_result(bid) next_token_logprobs = logits_output.next_token_logprobs else: # Move next_token_ids and logprobs to cpu if batch.return_logprob: next_token_logprobs = logits_output.next_token_logprobs[ torch.arange(len(next_token_ids), device=self.device), next_token_ids, ].tolist() next_token_ids = next_token_ids.tolist() self.token_to_kv_pool.free_group_begin() # Check finish condition for i, (req, next_token_id) in enumerate(zip(batch.reqs, next_token_ids)): if req.is_retracted: continue if self.enable_overlap and req.finished(): self.token_to_kv_pool.free(batch.out_cache_loc[i : i + 1]) continue req.completion_tokens_wo_jump_forward += 1 req.output_ids.append(next_token_id) req.check_finished() if req.grammar is not None: req.grammar.accept_token(next_token_id) if req.finished(): self.tree_cache.cache_finished_req(req) if req.return_logprob: req.output_token_logprobs.append( (next_token_logprobs[i], next_token_id) ) if req.top_logprobs_num > 0: req.output_top_logprobs.append(logits_output.output_top_logprobs[i]) self.stream_output(batch.reqs) self.token_to_kv_pool.free_group_end() self.forward_ct_decode = (self.forward_ct_decode + 1) % (1 << 30) if ( self.tp_rank == 0 and self.forward_ct_decode % self.server_args.decode_log_interval == 0 ): self.log_decode_stats() def add_logprob_return_values( self, i: int, req: Req, pt: int, next_token_ids: List[int], output: LogitsProcessorOutput, ): """Attach logprobs to the return values.""" req.output_token_logprobs.append( (output.next_token_logprobs[i], next_token_ids[i]) ) # If logprob_start_len > 0, then first logprob_start_len prompt tokens will be ignored. num_input_logprobs = req.extend_input_len - req.extend_logprob_start_len if req.normalized_prompt_logprob is None: req.normalized_prompt_logprob = output.normalized_prompt_logprobs[i] if req.input_token_logprobs is None: input_token_logprobs = output.input_token_logprobs[ pt : pt + num_input_logprobs - 1 - req.last_update_decode_tokens ] input_token_ids = req.fill_ids[ len(req.fill_ids) - num_input_logprobs + 1 : len(req.fill_ids) - req.last_update_decode_tokens ] req.input_token_logprobs = list(zip(input_token_logprobs, input_token_ids)) if ( req.logprob_start_len == 0 ): # The first token does not have logprob, pad it. req.input_token_logprobs = [ (None, req.fill_ids[0]) ] + req.input_token_logprobs if req.last_update_decode_tokens != 0: # Some decode tokens are re-computed in an extend batch req.output_token_logprobs.extend( list( zip( output.input_token_logprobs[ pt + num_input_logprobs - 1 - req.last_update_decode_tokens : pt + num_input_logprobs - 1 ], req.fill_ids[ len(req.fill_ids) - req.last_update_decode_tokens : len(req.fill_ids) ], ) ) ) if req.top_logprobs_num > 0: if req.input_top_logprobs is None: req.input_top_logprobs = output.input_top_logprobs[i] if req.logprob_start_len == 0: req.input_top_logprobs = [None] + req.input_top_logprobs if req.last_update_decode_tokens != 0: req.output_top_logprobs.extend( output.input_top_logprobs[i][-req.last_update_decode_tokens :] ) req.output_top_logprobs.append(output.output_top_logprobs[i]) return num_input_logprobs def stream_output(self, reqs: List[Req]): """Stream the output to detokenizer.""" output_rids = [] output_meta_info: List[dict] = [] output_finished_reason: List[BaseFinishReason] = [] if self.is_generation: output_vids = [] decoded_texts = [] output_read_ids = [] output_read_offsets = [] output_ids = [] output_skip_special_tokens = [] output_spaces_between_special_tokens = [] output_no_stop_trim = [] else: # embedding or reward model output_embeddings = [] is_stream_iter = self.forward_ct_decode % self.stream_interval == 0 for req in reqs: # TODO(lianmin): revisit this for overlap + retract + stream if req.finished() or ( req.stream and (is_stream_iter or len(req.output_ids) == 1) ): output_rids.append(req.rid) output_finished_reason.append(req.finished_reason) if self.is_generation: output_vids.append(req.vid) decoded_texts.append(req.decoded_text) read_ids, read_offset = req.init_incremental_detokenize() output_read_ids.append(read_ids) output_read_offsets.append(read_offset) if self.skip_tokenizer_init: output_ids.append(req.output_ids) output_skip_special_tokens.append( req.sampling_params.skip_special_tokens ) output_spaces_between_special_tokens.append( req.sampling_params.spaces_between_special_tokens ) output_no_stop_trim.append(req.sampling_params.no_stop_trim) meta_info = { "prompt_tokens": len(req.origin_input_ids), "completion_tokens": len(req.output_ids), "completion_tokens_wo_jump_forward": req.completion_tokens_wo_jump_forward, "cached_tokens": req.cached_tokens, "finish_reason": ( req.finished_reason.to_json() if req.finished_reason is not None else None ), } if req.return_logprob: ( meta_info["input_token_logprobs"], meta_info["output_token_logprobs"], meta_info["input_top_logprobs"], meta_info["output_top_logprobs"], meta_info["normalized_prompt_logprob"], ) = ( req.input_token_logprobs, req.output_token_logprobs, req.input_top_logprobs, req.output_top_logprobs, req.normalized_prompt_logprob, ) output_meta_info.append(meta_info) else: # embedding or reward model output_embeddings.append(req.embedding) meta_info = { "prompt_tokens": len(req.origin_input_ids), } output_meta_info.append(meta_info) # Send to detokenizer if output_rids: if self.is_generation: self.send_to_detokenizer.send_pyobj( BatchTokenIDOut( output_rids, output_vids, decoded_texts, output_read_ids, output_read_offsets, output_ids, output_skip_special_tokens, output_spaces_between_special_tokens, output_meta_info, output_finished_reason, output_no_stop_trim, ) ) else: # embedding or reward model self.send_to_detokenizer.send_pyobj( BatchEmbeddingOut( output_rids, output_embeddings, output_meta_info, output_finished_reason, ) ) def move_ready_grammar_requests(self): """Move requests whose grammar objects are ready from grammar_queue to waiting_queue.""" num_ready_reqs = 0 for req in self.grammar_queue: try: req.grammar = req.grammar.result(timeout=0.05) num_ready_reqs += 1 except futures._base.TimeoutError: break if self.tp_size > 1: # Sync across TP ranks to make sure they have the same number of ready requests tensor = torch.tensor(num_ready_reqs, dtype=torch.int32) torch.distributed.all_reduce( tensor, op=torch.distributed.ReduceOp.MAX, group=self.tp_cpu_group ) num_ready_reqs_max = tensor.item() for i in range(num_ready_reqs, num_ready_reqs_max): self.grammar_queue[i].grammar = self.grammar_queue[i].grammar.result() num_ready_reqs = num_ready_reqs_max self.waiting_queue.extend(self.grammar_queue[:num_ready_reqs]) self.grammar_queue = self.grammar_queue[num_ready_reqs:] def flush_cache(self): """Flush the memory pool and cache.""" if len(self.waiting_queue) == 0 and ( self.running_batch is None or len(self.running_batch.reqs) == 0 ): self.tree_cache.reset() self.tree_cache_metrics = {"total": 0, "hit": 0} if self.grammar_backend: self.grammar_backend.reset() self.req_to_token_pool.clear() self.token_to_kv_pool.clear() torch.cuda.empty_cache() logger.info("Cache flushed successfully!") if_success = True else: logging.warning( f"Cache not flushed because there are pending requests. " f"#queue-req: {len(self.waiting_queue)}, " f"#running-req: {0 if self.running_batch is None else len(self.running_batch.reqs)}" ) if_success = False return if_success def abort_request(self, recv_req: AbortReq): # Delete requests in the waiting queue to_del = None for i, req in enumerate(self.waiting_queue): if req.rid == recv_req.rid: to_del = i break if to_del is not None: del self.waiting_queue[to_del] # Delete requests in the running batch if self.running_batch: for req in self.running_batch.reqs: if req.rid == recv_req.rid and not req.finished(): req.finished_reason = FINISH_ABORT() self.tree_cache.cache_finished_req(req) break def update_weights(self, recv_req: UpdateWeightReqInput): """In-place update of the weights.""" success, message = self.tp_worker.update_weights(recv_req) if success: flash_cache_success = self.flush_cache() assert flash_cache_success, "Cache flush failed after updating weights" else: logger.error(message) return success, message def start_profile(self) -> None: if self.profiler is None: raise RuntimeError("Profiler is not enabled.") self.profiler.start() def stop_profile(self) -> None: if self.profiler is None: raise RuntimeError("Profiler is not enabled.") self.profiler.stop() self.profiler.export_chrome_trace( self.torch_profiler_trace_dir + "/" + str(time.time()) + ".trace.json.gz" ) logger.info("Profiler is done") def run_scheduler_process( server_args: ServerArgs, port_args: PortArgs, gpu_id: int, tp_rank: int, dp_rank: Optional[int], pipe_writer, ): if dp_rank is None: configure_logger(server_args, prefix=f" TP{tp_rank}") else: configure_logger(server_args, prefix=f" DP{dp_rank} TP{tp_rank}") suppress_other_loggers() try: scheduler = Scheduler(server_args, port_args, gpu_id, tp_rank, dp_rank) pipe_writer.send("ready") if scheduler.enable_overlap: scheduler.event_loop_overlap() else: scheduler.event_loop_normal() except Exception: msg = get_exception_traceback() logger.error(msg) kill_parent_process()