# Backend: SGLang Runtime (SRT) The SGLang Runtime (SRT) is an efficient serving engine. ## Quick Start Launch a server ``` python -m sglang.launch_server --model-path meta-llama/Meta-Llama-3-8B-Instruct --port 30000 ``` Send a request ``` curl http://localhost:30000/generate \ -H "Content-Type: application/json" \ -d '{ "text": "Once upon a time,", "sampling_params": { "max_new_tokens": 16, "temperature": 0 } }' ``` Learn more about the argument specification, streaming, and multi-modal support [here](../references/sampling_params.md). ## OpenAI Compatible API In addition, the server supports OpenAI-compatible APIs. ```python import openai client = openai.Client( base_url="http://127.0.0.1:30000/v1", api_key="EMPTY") # Text completion response = client.completions.create( model="default", prompt="The capital of France is", temperature=0, max_tokens=32, ) print(response) # Chat completion response = client.chat.completions.create( model="default", messages=[ {"role": "system", "content": "You are a helpful AI assistant"}, {"role": "user", "content": "List 3 countries and their capitals."}, ], temperature=0, max_tokens=64, ) print(response) # Text embedding response = client.embeddings.create( model="default", input="How are you today", ) print(response) ``` It supports streaming, vision, and almost all features of the Chat/Completions/Models/Batch endpoints specified by the [OpenAI API Reference](https://platform.openai.com/docs/api-reference/). ## Additional Server Arguments - To enable multi-GPU tensor parallelism, add `--tp 2`. If it reports the error "peer access is not supported between these two devices", add `--enable-p2p-check` to the server launch command. ``` python -m sglang.launch_server --model-path meta-llama/Meta-Llama-3-8B-Instruct --tp 2 ``` - To enable multi-GPU data parallelism, add `--dp 2`. Data parallelism is better for throughput if there is enough memory. It can also be used together with tensor parallelism. The following command uses 4 GPUs in total. ``` python -m sglang.launch_server --model-path meta-llama/Meta-Llama-3-8B-Instruct --dp 2 --tp 2 ``` - If you see out-of-memory errors during serving, try to reduce the memory usage of the KV cache pool by setting a smaller value of `--mem-fraction-static`. The default value is `0.9`. ``` python -m sglang.launch_server --model-path meta-llama/Meta-Llama-3-8B-Instruct --mem-fraction-static 0.7 ``` - See [hyperparameter tuning](../references/hyperparameter_tuning.md) on tuning hyperparameters for better performance. - If you see out-of-memory errors during prefill for long prompts, try to set a smaller chunked prefill size. ``` python -m sglang.launch_server --model-path meta-llama/Meta-Llama-3-8B-Instruct --chunked-prefill-size 4096 ``` - To enable the experimental overlapped scheduler, add `--enable-overlap-schedule`. It overlaps CPU scheduler with GPU computation and can accelerate almost all workloads. This does not work for constrained decoding currenly. - To enable torch.compile acceleration, add `--enable-torch-compile`. It accelerates small models on small batch sizes. This does not work for FP8 currenly. - To enable torchao quantization, add `--torchao-config int4wo-128`. It supports various quantization strategies. - To enable fp8 weight quantization, add `--quantization fp8` on a fp16 checkpoint or directly load a fp8 checkpoint without specifying any arguments. - To enable fp8 kv cache quantization, add `--kv-cache-dtype fp8_e5m2`. - If the model does not have a chat template in the Hugging Face tokenizer, you can specify a [custom chat template](../references/custom_chat_template.md). - To run tensor parallelism on multiple nodes, add `--nnodes 2`. If you have two nodes with two GPUs on each node and want to run TP=4, let `sgl-dev-0` be the hostname of the first node and `50000` be an available port, you can use the following commands. If you meet deadlock, please try to add `--disable-cuda-graph` ``` # Node 0 python -m sglang.launch_server --model-path meta-llama/Meta-Llama-3-8B-Instruct --tp 4 --nccl-init sgl-dev-0:50000 --nnodes 2 --node-rank 0 # Node 1 python -m sglang.launch_server --model-path meta-llama/Meta-Llama-3-8B-Instruct --tp 4 --nccl-init sgl-dev-0:50000 --nnodes 2 --node-rank 1 ``` ## Engine Without HTTP Server We also provide an inference engine **without a HTTP server**. For example, ```python import sglang as sgl def main(): prompts = [ "Hello, my name is", "The president of the United States is", "The capital of France is", "The future of AI is", ] sampling_params = {"temperature": 0.8, "top_p": 0.95} llm = sgl.Engine(model_path="meta-llama/Meta-Llama-3.1-8B-Instruct") outputs = llm.generate(prompts, sampling_params) for prompt, output in zip(prompts, outputs): print("===============================") print(f"Prompt: {prompt}\nGenerated text: {output['text']}") if __name__ == "__main__": main() ``` This can be used for offline batch inference and building custom servers. You can view the full example [here](https://github.com/sgl-project/sglang/tree/main/examples/runtime/engine). ## Use Models From ModelScope
More To use a model from [ModelScope](https://www.modelscope.cn), set the environment variable SGLANG_USE_MODELSCOPE. ``` export SGLANG_USE_MODELSCOPE=true ``` Launch [Qwen2-7B-Instruct](https://www.modelscope.cn/models/qwen/qwen2-7b-instruct) Server ``` SGLANG_USE_MODELSCOPE=true python -m sglang.launch_server --model-path qwen/Qwen2-7B-Instruct --port 30000 ``` Or start it by docker. ```bash docker run --gpus all \ -p 30000:30000 \ -v ~/.cache/modelscope:/root/.cache/modelscope \ --env "SGLANG_USE_MODELSCOPE=true" \ --ipc=host \ lmsysorg/sglang:latest \ python3 -m sglang.launch_server --model-path Qwen/Qwen2.5-7B-Instruct --host 0.0.0.0 --port 30000 ```
## Example: Run Llama 3.1 405B
More ```bash # Run 405B (fp8) on a single node python -m sglang.launch_server --model-path meta-llama/Meta-Llama-3.1-405B-Instruct-FP8 --tp 8 # Run 405B (fp16) on two nodes ## on the first node, replace the `172.16.4.52:20000` with your own first node ip address and port GLOO_SOCKET_IFNAME=eth0 python3 -m sglang.launch_server --model-path meta-llama/Meta-Llama-3.1-405B-Instruct --tp 16 --nccl-init-addr 172.16.4.52:20000 --nnodes 2 --node-rank 0 --disable-cuda-graph ## on the first node, replace the `172.16.4.52:20000` with your own first node ip address and port GLOO_SOCKET_IFNAME=eth0 python3 -m sglang.launch_server --model-path meta-llama/Meta-Llama-3.1-405B-Instruct --tp 16 --nccl-init-addr 172.16.4.52:20000 --nnodes 2 --node-rank 1 --disable-cuda-graph ```