# Sampling Parameters This doc describes the sampling parameters of the SGLang Runtime. It is the low-level endpoint of the runtime. If you want a high-level endpoint that can automatically handle chat templates, consider using the [OpenAI Compatible API](https://docs.sglang.ai/backend/openai_api_completions.html). ## `/generate` Endpoint The `/generate` endpoint accepts the following parameters in JSON format. For in detail usage see the [native api doc](https://docs.sglang.ai/backend/native_api.html). * `prompt`: The input prompt. Can be a single prompt or a batch of prompts. `Optional[Union[List[str], str]] = None` * `input_ids`: Alternative to `text`. Specify the input as token IDs instead of text. `Optional[Union[List[List[int]], List[int]]] = None` * `sampling_params`: The sampling parameters as described in the sections below. `Optional[Union[List[Dict], Dict]] = None` * `return_logprob`: Whether to return log probabilities for tokens. `Optional[Union[List[bool], bool]] = None` * `logprob_start_len`: If returning log probabilities, specifies the start position in the prompt. Default is "-1" which returns logprobs only for output tokens. `Optional[Union[List[int], int]] = None` * `top_logprobs_num`: If returning log probabilities, specifies the number of top logprobs to return at each position. `Optional[Union[List[int], int]] = None` * `stream`: Whether to stream the output. `bool = False` * `lora_path`: Path to LoRA weights. `Optional[Union[List[Optional[str]], Optional[str]]] = None` * `custom_logit_processor`: Custom logit processor for advanced sampling control. For usage see below. `Optional[Union[List[Optional[str]], str]] = None` * `return_hidden_states`: Whether to return hidden states of the model. Note that each time it changes, the cuda graph will be recaptured, which might lead to a performance hit. See the [examples](https://github.com/sgl-project/sglang/blob/main/examples/runtime/engine/hidden_states.py) for more information. `bool = False` ## Sampling params ### Core Parameters * `max_new_tokens`: The maximum output length measured in tokens. `int = 128` * `stop`: One or multiple [stop words](https://platform.openai.com/docs/api-reference/chat/create#chat-create-stop). Generation will stop if one of these words is sampled. `Optional[Union[str, List[str]]] = None` * `stop_token_ids`: Provide stop words in form of token ids. Generation will stop if one of these token ids is sampled. `Optional[List[int]] = []` * `temperature`: [Temperature](https://platform.openai.com/docs/api-reference/chat/create#chat-create-temperature) when sampling the next token. `temperature = 0` corresponds to greedy sampling, higher temperature leads to more diversity. `float = 1.0` * `top_p`: [Top-p](https://platform.openai.com/docs/api-reference/chat/create#chat-create-top_p) selects tokens from the smallest sorted set whose cumulative probability exceeds `top_p`. When `top_p = 1`, this reduces to unrestricted sampling from all tokens. `top_p: float = 1.0` * `top_k`: [Top-k](https://developer.nvidia.com/blog/how-to-get-better-outputs-from-your-large-language-model/#predictability_vs_creativity) randomly selects from the `k` highest-probability tokens. `int = -1` * `min_p`: [Min-p](https://github.com/huggingface/transformers/issues/27670) samples from tokens with probability larger than `min_p * highest_token_probability`. `float = 0.0` ### Penalizers To use penalizers you will need to `--disable-overlap`. Please note that this might degrade performance. * `frequency_penalty`: Penalizes tokens based on their frequency in generation so far. Must be between `-2` and `2` where negative numbers encourage repeatment of tokens and positive number encourages sampling of new tokens. The scaling of penalization grows linearly with each appearance of a token. `float = 0.0` * `presence_penalty`: Penalizes tokens if they appeared in the generation so far. Must be between `-2` and `2` where negative numbers encourage repeatment of tokens and positive number encourages sampling of new tokens. The scaling of the penalization is constant if a token occured. `float = 0.0` * `repetition_penalty`: Penalizes tokens if they appeared in prompt or generation so far. Must be between `0` and `2` where numbers smaller than `1` encourage repeatment of tokens and numbers larger than `2` encourages sampling of new tokens. The penalization scales multiplicatively. `float = 0.0` * `min_new_tokens`: Forces the model to generate at least `min_new_tokens` until a stop word or EOS token is sampled. Note that this might lead to unintended behavior for example if the distribution is highly skewed towards these tokens. `int = 0` ### Constrained decoding Please refer to our dedicated guide on [constrained decoding](https://docs.sglang.ai/backend/structured_outputs.html#Native-API-and-SGLang-Runtime-(SRT)) for the following parameters. * `json_schema`: `Optional[str] = None` * `regex`: `Optional[str] = None` * `ebnf`: `Optional[str] = None` ### Other options * `n`: Specifies the number of output sequences to generate per request. (Generating multiple outputs in one request (n > 1) is discouraged; repeat the same prompts for several times offer better control and efficiency.) `int = 1` * `spaces_between_special_tokens`: Whether or not to add spaces between special tokens during detokenization. `bool = True` * `no_stop_trim`: Don't trim stop words or EOS token from the generated text. `bool = False` * `ignore_eos`: Don't stop generation when EOS token is sampled. `bool = False` * `skip_special_tokens`: Remove special tokens during decoding. `bool = True` * `custom_params`: Used when employing `CustomLogitProcessor`. For usage see below. `Optional[List[Optional[Dict[str, Any]]]] = None` ### Custom Logit Processor Launch a server with `--enable-custom-logit-processor` flag on. ``` python -m sglang.launch_server --model-path meta-llama/Meta-Llama-3-8B-Instruct --port 30000 --enable-custom-logit-processor ``` Define a custom logit processor that will always sample a specific token id. ```python from sglang.srt.sampling.custom_logit_processor import CustomLogitProcessor class DeterministicLogitProcessor(CustomLogitProcessor): """A dummy logit processor that changes the logits to always sample the given token id. """ def __call__(self, logits, custom_param_list): # Check that the number of logits matches the number of custom parameters assert logits.shape[0] == len(custom_param_list) key = "token_id" for i, param_dict in enumerate(custom_param_list): # Mask all other tokens logits[i, :] = -float("inf") # Assign highest probability to the specified token logits[i, param_dict[key]] = 0.0 return logits ``` Send a request ```python import requests response = requests.post( "http://localhost:30000/generate", json={ "text": "The capital of France is", "custom_logit_processor": DeterministicLogitProcessor().to_str(), "sampling_params": { "temperature": 0.0, "max_new_tokens": 32, "custom_params": {"token_id": 5}, }, }, ) print(response.json()) ```