# Copyright 2023-2024 SGLang Team # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """ The definition of objects transferred between different processes (TokenizerManager, DetokenizerManager, Controller). """ import copy import uuid from dataclasses import dataclass, field from enum import Enum from typing import TYPE_CHECKING, Any, Dict, List, Optional, Set, Union from sglang.srt.managers.schedule_batch import BaseFinishReason from sglang.srt.multimodal.mm_utils import has_valid_data from sglang.srt.sampling.sampling_params import SamplingParams # Handle serialization of Image for pydantic if TYPE_CHECKING: from PIL.Image import Image else: Image = Any @dataclass class SessionParams: id: Optional[str] = None rid: Optional[str] = None offset: Optional[int] = None replace: Optional[bool] = None AudioDataItem = Union[str, Dict] ImageDataItem = Union[Image, str, Dict] @dataclass class GenerateReqInput: # The input prompt. It can be a single prompt or a batch of prompts. text: Optional[Union[List[str], str]] = None # The token ids for text; one can specify either text or input_ids input_ids: Optional[Union[List[List[int]], List[int]]] = None # The embeddings for input_ids; one can specify either text or input_ids or input_embeds. input_embeds: Optional[Union[List[List[List[float]]], List[List[float]]]] = None # The image input. It can be an image instance, file name, URL, or base64 encoded string. # Can be formatted as: # - Single image for a single request # - List of images (one per request in a batch) # - List of lists of images (multiple images per request) # See also python/sglang/srt/utils.py:load_image for more details. image_data: Optional[ Union[List[List[ImageDataItem]], List[ImageDataItem], ImageDataItem] ] = None # The audio input. Like image data, it can be a file name, a url, or base64 encoded string. audio_data: Optional[Union[List[AudioDataItem], AudioDataItem]] = None # The sampling_params. See descriptions below. sampling_params: Optional[Union[List[Dict], Dict]] = None # The request id. rid: Optional[Union[List[str], str]] = None # Whether to return logprobs. return_logprob: Optional[Union[List[bool], bool]] = None # If return logprobs, the start location in the prompt for returning logprobs. # By default, this value is "-1", which means it will only return logprobs for output tokens. logprob_start_len: Optional[Union[List[int], int]] = None # If return logprobs, the number of top logprobs to return at each position. top_logprobs_num: Optional[Union[List[int], int]] = None # If return logprobs, the token ids to return logprob for. token_ids_logprob: Optional[Union[List[List[int]], List[int]]] = None # Whether to detokenize tokens in text in the returned logprobs. return_text_in_logprobs: bool = False # Whether to stream output. stream: bool = False # Whether to log metrics for this request (e.g. health_generate calls do not log metrics) log_metrics: bool = True # The modalities of the image data [image, multi-images, video] modalities: Optional[List[str]] = None # The path to the LoRA lora_path: Optional[Union[List[Optional[str]], Optional[str]]] = None # Session info for continual prompting session_params: Optional[Union[List[Dict], Dict]] = None # Custom logit processor for advanced sampling control. Must be a serialized instance # of `CustomLogitProcessor` in python/sglang/srt/sampling/custom_logit_processor.py # Use the processor's `to_str()` method to generate the serialized string. custom_logit_processor: Optional[Union[List[Optional[str]], str]] = None # Whether to return hidden states return_hidden_states: Union[List[bool], bool] = False # For disaggregated inference bootstrap_host: Optional[Union[List[str], str]] = None bootstrap_port: Optional[Union[List[Optional[int]], int]] = None bootstrap_room: Optional[Union[List[int], int]] = None # For data parallel rank routing data_parallel_rank: Optional[int] = None def contains_mm_input(self) -> bool: return has_valid_data(self.image_data) or has_valid_data(self.audio_data) def normalize_batch_and_arguments(self): """ Normalize the batch size and arguments for the request. This method resolves various input formats and ensures all parameters are properly formatted as either single values or batches depending on the input. It also handles parallel sampling expansion and sets default values for unspecified parameters. Raises: ValueError: If inputs are not properly specified (e.g., none or all of text, input_ids, input_embeds are provided) """ self._validate_inputs() self._determine_batch_size() self._handle_parallel_sampling() if self.is_single: self._normalize_single_inputs() else: self._normalize_batch_inputs() self._validate_session_params() def _validate_inputs(self): """Validate that the input configuration is valid.""" if ( self.text is None and self.input_ids is None and self.input_embeds is None ) or ( self.text is not None and self.input_ids is not None and self.input_embeds is not None ): raise ValueError( "Either text, input_ids or input_embeds should be provided." ) def _determine_batch_size(self): """Determine if this is a single example or a batch and the batch size.""" if self.text is not None: if isinstance(self.text, str): self.is_single = True self.batch_size = 1 else: self.is_single = False self.batch_size = len(self.text) self.input_embeds = None elif self.input_ids is not None: if len(self.input_ids) == 0: raise ValueError("input_ids cannot be empty.") if isinstance(self.input_ids[0], int): self.is_single = True self.batch_size = 1 else: self.is_single = False self.batch_size = len(self.input_ids) self.input_embeds = None else: if isinstance(self.input_embeds[0][0], float): self.is_single = True self.batch_size = 1 else: self.is_single = False self.batch_size = len(self.input_embeds) def _handle_parallel_sampling(self): """Handle parallel sampling parameters and adjust batch size if needed.""" # Determine parallel sample count if self.sampling_params is None: self.parallel_sample_num = 1 return elif isinstance(self.sampling_params, dict): self.parallel_sample_num = self.sampling_params.get("n", 1) else: # isinstance(self.sampling_params, list): self.parallel_sample_num = self.sampling_params[0].get("n", 1) for sampling_params in self.sampling_params: if self.parallel_sample_num != sampling_params.get("n", 1): raise ValueError( "The parallel_sample_num should be the same for all samples in sample params." ) # If using parallel sampling with a single example, convert to batch if self.parallel_sample_num > 1 and self.is_single: self.is_single = False if self.text is not None: self.text = [self.text] if self.input_ids is not None: self.input_ids = [self.input_ids] def _normalize_single_inputs(self): """Normalize inputs for a single example.""" if self.sampling_params is None: self.sampling_params = {} if self.rid is None: self.rid = uuid.uuid4().hex if self.return_logprob is None: self.return_logprob = False if self.logprob_start_len is None: self.logprob_start_len = -1 if self.top_logprobs_num is None: self.top_logprobs_num = 0 if not self.token_ids_logprob: # covers both None and [] self.token_ids_logprob = None def _normalize_batch_inputs(self): """Normalize inputs for a batch of examples, including parallel sampling expansion.""" # Calculate expanded batch size if self.parallel_sample_num == 1: num = self.batch_size else: # Expand parallel_sample_num num = self.batch_size * self.parallel_sample_num # Expand input based on type self._expand_inputs(num) self._normalize_rid(num) self._normalize_lora_paths(num) self._normalize_image_data(num) self._normalize_audio_data(num) self._normalize_sampling_params(num) self._normalize_logprob_params(num) self._normalize_custom_logit_processor(num) def _expand_inputs(self, num): """Expand the main inputs (text, input_ids, input_embeds) for parallel sampling.""" if self.text is not None: if not isinstance(self.text, list): raise ValueError("Text should be a list for batch processing.") self.text = self.text * self.parallel_sample_num elif self.input_ids is not None: if not isinstance(self.input_ids, list) or not isinstance( self.input_ids[0], list ): raise ValueError( "input_ids should be a list of lists for batch processing." ) self.input_ids = self.input_ids * self.parallel_sample_num elif self.input_embeds is not None: if not isinstance(self.input_embeds, list): raise ValueError("input_embeds should be a list for batch processing.") self.input_embeds = self.input_embeds * self.parallel_sample_num def _normalize_lora_paths(self, num): """Normalize LoRA paths for batch processing.""" if self.lora_path is not None: if isinstance(self.lora_path, str): self.lora_path = [self.lora_path] * num elif isinstance(self.lora_path, list): self.lora_path = self.lora_path * self.parallel_sample_num else: raise ValueError("lora_path should be a list or a string.") def _normalize_image_data(self, num): """Normalize image data for batch processing.""" if self.image_data is None: self.image_data = [None] * num elif not isinstance(self.image_data, list): # Single image, convert to list of single-image lists self.image_data = [[self.image_data]] * num self.modalities = ["image"] * num elif isinstance(self.image_data, list): if len(self.image_data) != self.batch_size: raise ValueError( "The length of image_data should be equal to the batch size." ) self.modalities = [] if len(self.image_data) > 0 and isinstance(self.image_data[0], list): # Already a list of lists, keep as is for i in range(len(self.image_data)): if self.image_data[i] is None or self.image_data[i] == [None]: self.modalities.append(None) elif len(self.image_data[i]) == 1: self.modalities.append("image") elif len(self.image_data[i]) > 1: self.modalities.append("multi-images") # Expand parallel_sample_num self.image_data = self.image_data * self.parallel_sample_num self.modalities = self.modalities * self.parallel_sample_num else: # List of images for a batch, wrap each in a list wrapped_images = [[img] for img in self.image_data] # Expand for parallel sampling self.image_data = wrapped_images * self.parallel_sample_num self.modalities = ["image"] * num def _normalize_audio_data(self, num): """Normalize audio data for batch processing.""" if self.audio_data is None: self.audio_data = [None] * num elif not isinstance(self.audio_data, list): self.audio_data = [self.audio_data] * num elif isinstance(self.audio_data, list): self.audio_data = self.audio_data * self.parallel_sample_num def _normalize_sampling_params(self, num): """Normalize sampling parameters for batch processing.""" if self.sampling_params is None: self.sampling_params = [{}] * num elif isinstance(self.sampling_params, dict): self.sampling_params = [self.sampling_params] * num else: # Already a list self.sampling_params = self.sampling_params * self.parallel_sample_num def _normalize_rid(self, num): """Normalize request IDs for batch processing.""" if self.rid is None: self.rid = [uuid.uuid4().hex for _ in range(num)] elif isinstance(self.rid, str): new_rids = [f"{self.rid}_{i}" for i in range(num)] self.rid = new_rids elif isinstance(self.rid, list): if len(self.rid) != num: raise ValueError( "The specified rids length mismatch with the batch_size for batch processing." ) else: raise ValueError("The rid should be a string or a list of strings.") def _normalize_logprob_params(self, num): """Normalize logprob-related parameters for batch processing.""" # Helper function to normalize a parameter def normalize_param(param, default_value, param_name): if param is None: return [default_value] * num elif not isinstance(param, list): return [param] * num else: if self.parallel_sample_num > 1: raise ValueError( f"Cannot use list {param_name} with parallel_sample_num > 1" ) return param # Normalize each logprob parameter self.return_logprob = normalize_param( self.return_logprob, False, "return_logprob" ) self.logprob_start_len = normalize_param( self.logprob_start_len, -1, "logprob_start_len" ) self.top_logprobs_num = normalize_param( self.top_logprobs_num, 0, "top_logprobs_num" ) # Handle token_ids_logprob specially due to its nested structure if not self.token_ids_logprob: # covers both None and [] self.token_ids_logprob = [None] * num elif not isinstance(self.token_ids_logprob, list): self.token_ids_logprob = [[self.token_ids_logprob] for _ in range(num)] elif not isinstance(self.token_ids_logprob[0], list): self.token_ids_logprob = [ copy.deepcopy(self.token_ids_logprob) for _ in range(num) ] elif self.parallel_sample_num > 1: raise ValueError( "Cannot use list token_ids_logprob with parallel_sample_num > 1" ) def _normalize_custom_logit_processor(self, num): """Normalize custom logit processor for batch processing.""" if self.custom_logit_processor is None: self.custom_logit_processor = [None] * num elif not isinstance(self.custom_logit_processor, list): self.custom_logit_processor = [self.custom_logit_processor] * num elif self.parallel_sample_num > 1: raise ValueError( "Cannot use list custom_logit_processor with parallel_sample_num > 1" ) def _validate_session_params(self): """Validate that session parameters are properly formatted.""" if self.session_params is not None: if not isinstance(self.session_params, dict) and not isinstance( self.session_params[0], dict ): raise ValueError("Session params must be a dict or a list of dicts.") def regenerate_rid(self): """Generate a new request ID and return it.""" self.rid = uuid.uuid4().hex return self.rid def __getitem__(self, i): return GenerateReqInput( text=self.text[i] if self.text is not None else None, input_ids=self.input_ids[i] if self.input_ids is not None else None, image_data=self.image_data[i], audio_data=self.audio_data[i], sampling_params=self.sampling_params[i], rid=self.rid[i], return_logprob=self.return_logprob[i], logprob_start_len=self.logprob_start_len[i], top_logprobs_num=self.top_logprobs_num[i], token_ids_logprob=self.token_ids_logprob[i], return_text_in_logprobs=self.return_text_in_logprobs, stream=self.stream, log_metrics=self.log_metrics, modalities=self.modalities[i] if self.modalities else None, lora_path=self.lora_path[i] if self.lora_path is not None else None, custom_logit_processor=( self.custom_logit_processor[i] if self.custom_logit_processor is not None else None ), return_hidden_states=( self.return_hidden_states[i] if isinstance(self.return_hidden_states, list) else self.return_hidden_states ), # if `__getitem__` is called, the bootstrap_host, bootstrap_port, bootstrap_room must be a list bootstrap_host=( self.bootstrap_host[i] if self.bootstrap_host is not None else None ), bootstrap_port=( self.bootstrap_port[i] if self.bootstrap_port is not None else None ), bootstrap_room=( self.bootstrap_room[i] if self.bootstrap_room is not None else None ), data_parallel_rank=( self.data_parallel_rank if self.data_parallel_rank is not None else None ), ) @dataclass class TokenizedGenerateReqInput: # The request id rid: str # The input text input_text: str # The input token ids input_ids: List[int] # The multimodal inputs mm_inputs: dict # The sampling parameters sampling_params: SamplingParams # Whether to return the logprobs return_logprob: bool # If return logprobs, the start location in the prompt for returning logprobs. logprob_start_len: int # If return logprobs, the number of top logprobs to return at each position. top_logprobs_num: int # If return logprobs, the token id to return logprob for token_ids_logprob: List[int] # Whether to stream output stream: bool # LoRA related lora_path: Optional[str] = None # None means just use the base model # The input embeds input_embeds: Optional[Union[List[List[List[float]]], List[List[float]]]] = None # Session info for continual prompting session_params: Optional[SessionParams] = None # Custom logit processor for advanced sampling control. Must be a serialized instance # of `CustomLogitProcessor` in python/sglang/srt/sampling/custom_logit_processor.py # Use the processor's `to_str()` method to generate the serialized string. custom_logit_processor: Optional[str] = None # Whether to return hidden states return_hidden_states: bool = False # For disaggregated inference bootstrap_host: Optional[str] = None bootstrap_port: Optional[int] = None bootstrap_room: Optional[int] = None # For data parallel rank routing data_parallel_rank: Optional[int] = None @dataclass class EmbeddingReqInput: # The input prompt. It can be a single prompt or a batch of prompts. text: Optional[Union[List[List[str]], List[str], str]] = None # The image input. It can be an image instance, file name, URL, or base64 encoded string. # Can be formatted as: # - Single image for a single request # - List of images (one per request in a batch) # - List of lists of images (multiple images per request) # See also python/sglang/srt/utils.py:load_image for more details. image_data: Optional[ Union[List[List[Union[Image, str]]], List[Union[Image, str]], Union[Image, str]] ] = None # The audio input. Like image data, it can be a file name, a url, or base64 encoded string. audio_data: Optional[Union[List[str], str]] = None # The token ids for text; one can either specify text or input_ids. input_ids: Optional[Union[List[List[int]], List[int]]] = None # The request id. rid: Optional[Union[List[str], str]] = None # Dummy sampling params for compatibility sampling_params: Union[List[Dict], Dict] = None # Dummy input embeds for compatibility input_embeds: Optional[Union[List[List[List[float]]], List[List[float]]]] = None # Whether to log metrics for this request (e.g. health_generate calls do not log metrics) log_metrics: bool = True # The modalities of the image data [image, multi-images, video] modalities: Optional[List[str]] = None # For cross-encoder requests is_cross_encoder_request: bool = False def normalize_batch_and_arguments(self): # at least one of text, input_ids, or image should be provided if self.text is None and self.input_ids is None and self.image_data is None: raise ValueError( "At least one of text, input_ids, or image should be provided" ) # text and input_ids cannot be provided at the same time if self.text is not None and self.input_ids is not None: raise ValueError("text and input_ids cannot be provided at the same time") # Derive the batch size self.batch_size = 0 self.is_single = True # check the batch size of text if self.text is not None: if isinstance(self.text, list): self.batch_size += len(self.text) self.is_single = False else: self.batch_size += 1 # check the batch size of input_ids if self.input_ids is not None: if isinstance(self.input_ids[0], list): self.batch_size += len(self.input_ids) self.is_single = False else: self.batch_size += 1 # Fill in default arguments if self.is_single: if self.rid is None: self.rid = uuid.uuid4().hex if self.sampling_params is None: self.sampling_params = {} self.sampling_params["max_new_tokens"] = 0 else: if self.rid is None: self.rid = [uuid.uuid4().hex for _ in range(self.batch_size)] else: assert isinstance(self.rid, list), "The rid should be a list." if self.sampling_params is None: self.sampling_params = [{}] * self.batch_size for i in range(self.batch_size): self.sampling_params[i]["max_new_tokens"] = 0 def regenerate_rid(self): self.rid = uuid.uuid4().hex return self.rid def contains_mm_input(self) -> bool: return has_valid_data(self.image_data) or has_valid_data(self.audio_data) def __getitem__(self, i): if self.is_cross_encoder_request: return EmbeddingReqInput( text=[self.text[i]] if self.text is not None else None, input_ids=None, image_data=None, sampling_params=self.sampling_params[i], rid=self.rid[i], is_cross_encoder_request=True, ) return EmbeddingReqInput( text=self.text[i] if self.text is not None else None, input_ids=self.input_ids[i] if self.input_ids is not None else None, image_data=self.image_data[i] if self.image_data is not None else None, sampling_params=self.sampling_params[i], rid=self.rid[i], ) @dataclass class TokenizedEmbeddingReqInput: # The request id rid: str # The input text input_text: str # The input token ids input_ids: List[int] # The image inputs image_inputs: dict # The token type ids token_type_ids: List[int] # Dummy sampling params for compatibility sampling_params: SamplingParams @dataclass class BatchTokenIDOut: # The request id rids: List[str] # The finish reason finished_reasons: List[BaseFinishReason] # For incremental decoding decoded_texts: List[str] decode_ids: List[int] read_offsets: List[int] # Only used when `--skip-tokenizer-init` is on output_ids: Optional[List[int]] # Detokenization configs skip_special_tokens: List[bool] spaces_between_special_tokens: List[bool] no_stop_trim: List[bool] # Token counts prompt_tokens: List[int] completion_tokens: List[int] cached_tokens: List[int] spec_verify_ct: List[int] # Logprobs input_token_logprobs_val: List[float] input_token_logprobs_idx: List[int] output_token_logprobs_val: List[float] output_token_logprobs_idx: List[int] input_top_logprobs_val: List[List] input_top_logprobs_idx: List[List] output_top_logprobs_val: List[List] output_top_logprobs_idx: List[List] input_token_ids_logprobs_val: List[List] input_token_ids_logprobs_idx: List[List] output_token_ids_logprobs_val: List[List] output_token_ids_logprobs_idx: List[List] # Hidden states output_hidden_states: List[List[float]] @dataclass class BatchMultimodalDecodeReq: # The request id rids: List[str] finished_reasons: List[BaseFinishReason] # Token counts prompt_tokens: List[int] completion_tokens: List[int] cached_tokens: List[int] @dataclass class BatchStrOut: # The request id rids: List[str] # The finish reason finished_reasons: List[dict] # The output decoded strings output_strs: List[str] # The token ids output_ids: Optional[List[int]] # Token counts prompt_tokens: List[int] completion_tokens: List[int] cached_tokens: List[int] spec_verify_ct: List[int] # Logprobs input_token_logprobs_val: List[float] input_token_logprobs_idx: List[int] output_token_logprobs_val: List[float] output_token_logprobs_idx: List[int] input_top_logprobs_val: List[List] input_top_logprobs_idx: List[List] output_top_logprobs_val: List[List] output_top_logprobs_idx: List[List] input_token_ids_logprobs_val: List[List] input_token_ids_logprobs_idx: List[List] output_token_ids_logprobs_val: List[List] output_token_ids_logprobs_idx: List[List] # Hidden states output_hidden_states: List[List[float]] @dataclass class BatchMultimodalOut: # The request id rids: List[str] # The finish reason finished_reasons: List[dict] # The outputs outputs: List[List[Dict]] # Token counts prompt_tokens: List[int] completion_tokens: List[int] cached_tokens: List[int] @dataclass class BatchEmbeddingOut: # The request id rids: List[str] # The finish reason finished_reasons: List[BaseFinishReason] # The output embedding embeddings: List[List[float]] # Token counts prompt_tokens: List[int] cached_tokens: List[int] @dataclass class FlushCacheReqInput: pass @dataclass class FlushCacheReqOutput: success: bool @dataclass class UpdateWeightFromDiskReqInput: # The model path with the new weights model_path: str # The format to load the weights load_format: Optional[str] = None @dataclass class UpdateWeightFromDiskReqOutput: success: bool message: str # Number of paused requests during weight sync. num_paused_requests: Optional[int] = 0 @dataclass class UpdateWeightsFromDistributedReqInput: name: str dtype: str shape: List[int] @dataclass class UpdateWeightsFromDistributedReqOutput: success: bool message: str @dataclass class UpdateWeightsFromTensorReqInput: """Update model weights from tensor input. - Tensors are serialized for transmission - Data is structured in JSON for easy transmission over HTTP """ serialized_named_tensors: List[Union[str, bytes]] # Optional format specification for loading load_format: Optional[str] = None # Whether to flush the cache after updating weights flush_cache: bool = True @dataclass class UpdateWeightsFromTensorReqOutput: success: bool message: str @dataclass class InitWeightsUpdateGroupReqInput: # The master address master_address: str # The master port master_port: int # The rank offset rank_offset: int # The world size world_size: int # The group name group_name: str = "weight_update_group" # The backend backend: str = "nccl" @dataclass class InitWeightsUpdateGroupReqOutput: success: bool message: str @dataclass class GetWeightsByNameReqInput: name: str truncate_size: int = 100 @dataclass class GetWeightsByNameReqOutput: parameter: list @dataclass class ReleaseMemoryOccupationReqInput: # Optional tags to identify the memory region, which is primarily used for RL # Currently we only support `weights` and `kv_cache` tags: Optional[List[str]] = None @dataclass class ReleaseMemoryOccupationReqOutput: pass @dataclass class ResumeMemoryOccupationReqInput: # Optional tags to identify the memory region, which is primarily used for RL # Currently we only support `weights` and `kv_cache` tags: Optional[List[str]] = None @dataclass class ResumeMemoryOccupationReqOutput: pass @dataclass class SlowDownReqInput: forward_sleep_time: Optional[float] @dataclass class SlowDownReqOutput: pass @dataclass class AbortReq: # The request id rid: str @dataclass class GetInternalStateReq: pass @dataclass class GetInternalStateReqOutput: internal_state: Dict[Any, Any] @dataclass class SetInternalStateReq: server_args: Dict[str, Any] @dataclass class SetInternalStateReqOutput: updated: bool server_args: Dict[str, Any] @dataclass class ProfileReqInput: # The output directory output_dir: Optional[str] = None # If set, it profile as many as this number of steps. # If it is set, profiling is automatically stopped after this step, and # the caller doesn't need to run stop_profile. num_steps: Optional[int] = None activities: Optional[List[str]] = None profile_by_stage: bool = False with_stack: Optional[bool] = None record_shapes: Optional[bool] = None class ProfileReqType(Enum): START_PROFILE = 1 STOP_PROFILE = 2 class ExpertDistributionReq(Enum): START_RECORD = 1 STOP_RECORD = 2 DUMP_RECORD = 3 @dataclass class ExpertDistributionReqOutput: pass @dataclass class ProfileReq: type: ProfileReqType output_dir: Optional[str] = None num_steps: Optional[int] = None activities: Optional[List[str]] = None profile_by_stage: bool = False with_stack: Optional[bool] = None record_shapes: Optional[bool] = None profile_id: Optional[str] = None @dataclass class ProfileReqOutput: success: bool message: str @dataclass class ConfigureLoggingReq: log_requests: Optional[bool] = None log_requests_level: Optional[int] = None dump_requests_folder: Optional[str] = None dump_requests_threshold: Optional[int] = None @dataclass class OpenSessionReqInput: capacity_of_str_len: int session_id: Optional[str] = None @dataclass class CloseSessionReqInput: session_id: str @dataclass class OpenSessionReqOutput: session_id: Optional[str] success: bool @dataclass class HealthCheckOutput: pass @dataclass class Function: description: Optional[str] = None name: Optional[str] = None parameters: Optional[object] = None @dataclass class Tool: function: Function type: Optional[str] = "function" @dataclass class ParseFunctionCallReq: text: str # The text to parse. tools: List[Tool] = field( default_factory=list ) # A list of available function tools (name, parameters, etc.). tool_call_parser: Optional[str] = ( None # Specify the parser type, e.g. 'llama3', 'qwen25', or 'mistral'. If not specified, tries all. ) @dataclass class SeparateReasoningReqInput: text: str # The text to parse. reasoning_parser: str # Specify the parser type, e.g., "deepseek-r1". @dataclass class VertexGenerateReqInput: instances: List[dict] parameters: Optional[dict] = None @dataclass class RpcReqInput: method: str parameters: Optional[Dict] = None @dataclass class RpcReqOutput: success: bool message: str @dataclass class LoadLoRAAdapterReqInput: # The name of the lora module to newly loaded. lora_name: str # The path of loading. lora_path: str @dataclass class UnloadLoRAAdapterReqInput: # The name of lora module to unload. lora_name: str @dataclass class LoRAUpdateResult: success: bool error_message: Optional[str] = None loaded_adapters: Dict[str, str] = field(default_factory=dict) LoadLoRAAdapterReqOutput = UnloadLoRAAdapterReqOutput = LoRAUpdateResult