# Copyright 2023-2024 SGLang Team # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Constrained decoding with llguidance backend.""" import json import logging import os from typing import List, Optional, Tuple import torch from llguidance import LLMatcher, LLTokenizer, StructTag, grammar_from from llguidance.hf import from_tokenizer from llguidance.torch import ( allocate_token_bitmask, apply_token_bitmask_inplace, fill_next_token_bitmask, ) from sglang.srt.constrained.base_grammar_backend import ( INVALID_GRAMMAR_OBJ, BaseGrammarBackend, BaseGrammarObject, ) logger = logging.getLogger(__name__) class GuidanceGrammar(BaseGrammarObject): def __init__(self, llguidance_tokenizer: LLTokenizer, serialized_grammar: str): super().__init__() self.llguidance_tokenizer = llguidance_tokenizer self.serialized_grammar = serialized_grammar self.ll_matcher = LLMatcher( self.llguidance_tokenizer, self.serialized_grammar, log_level=int(os.environ.get("LLGUIDANCE_LOG_LEVEL", "1")), ) self.finished = False self.bitmask = None def accept_token(self, token: int): if not self.ll_matcher.consume_token(token): logger.warning(f"matcher error: {self.ll_matcher.get_error()}") self.finished = True def fill_vocab_mask(self, vocab_mask: torch.Tensor, idx: int) -> None: if self.ll_matcher.is_stopped(): self.finished = True fill_next_token_bitmask(self.ll_matcher, vocab_mask, idx) def allocate_vocab_mask( self, vocab_size: int, batch_size: int, device ) -> torch.Tensor: if self.bitmask is None or self.bitmask.shape[0] < batch_size: # only create bitmask when batch gets larger self.bitmask = allocate_token_bitmask( batch_size, self.llguidance_tokenizer.vocab_size ) bitmask = self.bitmask else: bitmask = self.bitmask[:batch_size] return bitmask @staticmethod def move_vocab_mask(vocab_mask: torch.Tensor, device) -> torch.Tensor: return vocab_mask.to(device, non_blocking=True) @staticmethod def apply_vocab_mask(logits: torch.Tensor, vocab_mask: torch.Tensor) -> None: apply_token_bitmask_inplace(logits, vocab_mask) def copy(self): return GuidanceGrammar( llguidance_tokenizer=self.llguidance_tokenizer, serialized_grammar=self.serialized_grammar, ) def try_jump_forward(self, tokenizer) -> Optional[Tuple[List[int], str]]: ff_tokens = self.ll_matcher.compute_ff_tokens() if ff_tokens: return ff_tokens, "" else: return None def jump_forward_str_state(self, helper: Tuple[List[int], str]) -> Tuple[str, int]: return "", -1 def jump_and_retokenize( self, old_output_ids: List[int], new_output_ids: List[int], next_state: int ): pass class GuidanceBackend(BaseGrammarBackend): def __init__( self, tokenizer, whitespace_pattern: Optional[str] = None, n_vocab: Optional[int] = None, ): super().__init__() self.tokenizer = tokenizer self.whitespace_pattern = whitespace_pattern self.llguidance_tokenizer = from_tokenizer(self.tokenizer, n_vocab) def _from_serialized(self, serialized_grammar) -> Optional[GuidanceGrammar]: try: return GuidanceGrammar( llguidance_tokenizer=self.llguidance_tokenizer, serialized_grammar=serialized_grammar, ) except Exception as e: logger.error(f"Hit invalid grammar: {serialized_grammar=}, {e=}") return INVALID_GRAMMAR_OBJ def dispatch_json(self, key_string: str) -> Optional[GuidanceGrammar]: try: serialized_grammar = LLMatcher.grammar_from_json_schema( key_string, defaults={ "whitespace_pattern": self.whitespace_pattern, }, ) except Exception as e: logger.error(f"Hit invalid json_schema: {key_string=}, {e=}") return INVALID_GRAMMAR_OBJ return self._from_serialized(serialized_grammar) def dispatch_regex(self, key_string: str) -> Optional[GuidanceGrammar]: serialized_grammar = grammar_from("regex", key_string) return self._from_serialized(serialized_grammar) def dispatch_ebnf(self, key_string: str) -> Optional[GuidanceGrammar]: try: serialized_grammar = grammar_from("ebnf", key_string) return self._from_serialized(serialized_grammar) except ValueError as e: logger.error(f"Hit invalid ebnf: {key_string=}, {e=}") return INVALID_GRAMMAR_OBJ def dispatch_structural_tag(self, key_string: str) -> Optional[GuidanceGrammar]: try: structural_tag = json.loads(key_string) tags = [ StructTag( begin=structure["begin"], grammar=structure["schema"], end=structure["end"], trigger=structural_tag["triggers"][0], # TODO? ) for structure in structural_tag["structures"] ] g = StructTag.to_grammar(tags) return self._from_serialized(g) except Exception as e: logging.error(f"Hit invalid structural_tag: {key_string=}, {e=}") return INVALID_GRAMMAR_OBJ