# SGLang Router SGLang router is a standalone module implemented in Rust to achieve data parallelism across SGLang instances. ## User docs Please check https://docs.sglang.ai/router/router.html ## Developer docs ### Prerequisites - Rust and Cargo installed ```bash # Install rustup (Rust installer and version manager) curl --proto '=https' --tlsv1.2 -sSf https://sh.rustup.rs | sh # Follow the installation prompts, then reload your shell source $HOME/.cargo/env # Verify installation rustc --version cargo --version ``` - Python with pip installed ### Build Process #### 1. Build Rust Project ```bash $ cargo build ``` #### 2. Build Python Binding ##### Option A: Build and Install Wheel 1. Build the wheel package: ```bash $ pip install setuptools-rust wheel build $ python -m build ``` 2. Install the generated wheel: ```bash $ pip install ``` If you want one handy command to do build + install for every change you make: ```bash $ python -m build && pip install --force-reinstall dist/*.whl ``` ##### Option B: Development Mode For development purposes, you can install the package in editable mode: Warning: Using editable python binding can suffer from performance degradation!! Please build a fresh wheel for every update if you want to test performance. ```bash $ pip install -e . ``` **Note:** When modifying Rust code, you must rebuild the wheel for changes to take effect. ### Logging The SGL Router includes structured logging with console output by default. To enable log files: ```python # Enable file logging when creating a router router = Router( worker_urls=["http://worker1:8000", "http://worker2:8000"], log_dir="./logs" # Daily log files will be created here ) ``` Use the `--verbose` flag with the CLI for more detailed logs. ### Kubernetes Service Discovery SGL Router supports automatic service discovery for worker nodes in Kubernetes environments. When enabled, the router will automatically: - Discover and add worker pods with matching labels - Remove unhealthy or deleted worker pods - Dynamically adjust the worker pool based on pod health and availability #### Command Line Usage ```bash python -m sglang_router.launch_router \ --service-discovery \ --selector app=sglang-worker role=inference \ --service-discovery-port 8000 \ --service-discovery-namespace default ``` #### Service Discovery Arguments - `--service-discovery`: Enable Kubernetes service discovery feature - `--selector`: One or more label key-value pairs for pod selection (format: key1=value1 key2=value2) - `--service-discovery-port`: Port to use when generating worker URLs (default: 80) - `--service-discovery-namespace`: Optional. Kubernetes namespace to watch for pods. If not provided, watches all namespaces (requires cluster-wide permissions) #### RBAC Requirements When using service discovery, you must configure proper Kubernetes RBAC permissions: - **If using namespace-scoped discovery** (with `--service-discovery-namespace`): Set up a ServiceAccount, Role, and RoleBinding - **If watching all namespaces** (without specifying namespace): Set up a ServiceAccount, ClusterRole, and ClusterRoleBinding with permissions to list/watch pods at the cluster level ### Troubleshooting 1. If rust analyzer is not working in VSCode, set `rust-analyzer.linkedProjects` to the absolute path of `Cargo.toml` in your repo. For example: ```json { "rust-analyzer.linkedProjects": ["/workspaces/sglang/sgl-router/Cargo.toml"] } ``` ### CI/CD Setup The continuous integration pipeline consists of three main steps: #### 1. Build Wheels - Uses `cibuildwheel` to create manylinux x86_64 packages - Compatible with major Linux distributions (Ubuntu, CentOS, etc.) - Additional configurations can be added to support other OS/architectures - Reference: [cibuildwheel documentation](https://cibuildwheel.pypa.io/en/stable/) #### 2. Build Source Distribution - Creates a source distribution containing the raw, unbuilt code - Enables `pip` to build the package from source when prebuilt wheels are unavailable #### 3. Publish to PyPI - Uploads both wheels and source distribution to PyPI The CI configuration is based on the [tiktoken workflow](https://github.com/openai/tiktoken/blob/63527649963def8c759b0f91f2eb69a40934e468/.github/workflows/build_wheels.yml#L1).