Unverified Commit ebf495f0 authored by Yi Zhang's avatar Yi Zhang Committed by GitHub
Browse files

sgl-kernel use cutlass latest version for fp8 blockwise gemm (#5207)

parent 7f875f12
......@@ -2,18 +2,22 @@ import argparse
import copy
import itertools
import deep_gemm
import torch
import triton
from deep_gemm import get_col_major_tma_aligned_tensor
from sgl_kernel import fp8_blockwise_scaled_mm
from vllm._custom_ops import cutlass_scaled_mm as vllm_scaled_mm
from sglang.srt.layers.quantization.fp8_kernel import w8a8_block_fp8_matmul
def get_weight_shapes(args):
models_tps = list(itertools.product(args.models, args.tp_sizes))
# NOTE(HandH1998): The weight shapes only works for DeepSeek-V3. Modify them, if you tune for another different model.
# cannot TP
total = [
# (512 + 64, 7168), # this weight is not supported by current kernel
(512 + 64, 7168),
((128 + 64) * 128, 7168),
(128 * (128 + 128), 512),
(7168, 16384),
......@@ -52,6 +56,23 @@ def cdiv(a: int, b: int) -> int:
return -(a // -b)
def fp8_gemm_deepgemm(
x_fp8: torch.Tensor,
x_scale: torch.Tensor,
y_fp8: torch.Tensor,
y_scale: torch.Tensor,
m: int,
n: int,
k: int,
):
"""DeepGEMM implementation of FP8 GEMM"""
out = torch.empty((m, n), device="cuda", dtype=torch.bfloat16)
# Run DeepGEMM kernel
deep_gemm.gemm_fp8_fp8_bf16_nt((x_fp8, x_scale), (y_fp8, y_scale), out)
return out
def scale_shape(shape, group_shape):
assert len(shape) == len(group_shape)
return tuple(cdiv(shape[i], group_shape[i]) for i in range(len(group_shape)))
......@@ -60,12 +81,12 @@ def scale_shape(shape, group_shape):
@triton.testing.perf_report(
triton.testing.Benchmark(
x_names=["batch_size"],
x_vals=[1, 16, 32, 64, 128, 256, 512, 1024, 2048],
x_vals=[1, 8, 16, 32, 64, 128, 256, 512, 1024, 2048, 4096],
x_log=False,
line_arg="provider",
line_vals=["vllm", "sgl-kernel"],
line_names=["vllm fp8 blockwise gemm", "sgl-kernel fp8 blockwise gemm"],
styles=[("blue", "-"), ("orange", "-")],
line_vals=["vllm", "sgl-kernel", "triton", "deepgemm"],
line_names=["vllm", "sgl-kernel", "sglang triton", "deepgemm"],
styles=[("blue", "-"), ("orange", "-"), ("red", "-"), ("yellow", "-")],
ylabel="GB/s",
plot_name="fp8 blockwise scaled matmul",
args={},
......@@ -80,7 +101,7 @@ def benchmark(batch_size, provider, N, K):
a_fp8 = a_fp32.clamp(min=fp8_min, max=fp8_max).to(torch.float8_e4m3fn)
b_fp32 = (torch.rand(N, K, dtype=torch.float32, device="cuda") - 0.5) * 2 * fp8_max
b_fp8 = b_fp32.clamp(min=fp8_min, max=fp8_max).to(torch.float8_e4m3fn).t()
b_fp8 = b_fp32.clamp(min=fp8_min, max=fp8_max).to(torch.float8_e4m3fn)
scale_a_group_shape = (1, 128)
scale_b_group_shape = (128, 128)
......@@ -89,11 +110,11 @@ def benchmark(batch_size, provider, N, K):
scale_a = torch.randn(scale_a_shape, device="cuda", dtype=torch.float32)
scale_b = torch.randn(scale_b_shape, device="cuda", dtype=torch.float32)
scale_a = scale_a.t().contiguous().t()
scale_b = scale_b.t().contiguous().t()
quantiles = [0.5, 0.2, 0.8]
if provider == "sgl-kernel":
scale_a = scale_a.t().contiguous().t()
b_fp8, scale_b = b_fp8.t(), scale_b.t()
ms, min_ms, max_ms = triton.testing.do_bench(
lambda: fp8_blockwise_scaled_mm(
a_fp8, b_fp8, scale_a, scale_b, torch.float16
......@@ -101,19 +122,28 @@ def benchmark(batch_size, provider, N, K):
quantiles=quantiles,
)
if provider == "vllm":
scale_a = scale_a.t().contiguous().t()
b_fp8, scale_b = b_fp8.t(), scale_b.t()
ms, min_ms, max_ms = triton.testing.do_bench(
lambda: vllm_scaled_mm(a_fp8, b_fp8, scale_a, scale_b, torch.float16),
quantiles=quantiles,
)
gbps = (
lambda ms: (
(2 * M * N * K - M * N) * a_fp8.element_size()
+ (3 * M * N) * scale_a.element_size()
if provider == "triton":
ms, min_ms, max_ms = triton.testing.do_bench(
lambda: w8a8_block_fp8_matmul(
a_fp8, b_fp8, scale_a, scale_b, [128, 128], torch.float16
),
quantiles=quantiles,
)
if provider == "deepgemm":
scale_a_col_major = get_col_major_tma_aligned_tensor(scale_a.clone())
ms, min_ms, max_ms = triton.testing.do_bench(
lambda: fp8_gemm_deepgemm(
a_fp8, scale_a_col_major, b_fp8, scale_b, M, N, K
),
quantiles=quantiles,
)
* 1e-9
/ (ms * 1e-3)
)
return gbps(ms), gbps(max_ms), gbps(min_ms)
return ms * 1000, max_ms * 1000, min_ms * 1000 # convert to ms
if __name__ == "__main__":
......@@ -136,6 +166,9 @@ if __name__ == "__main__":
NK_model_names = get_weight_shapes(args)
for N, K, model_name in NK_model_names:
if N % 128 != 0 or K % 128 != 0:
print(f"Skip {N=}, {K=} now")
continue
print(f"{model_name} N={N} K={K}: ")
benchmark.run(
print_data=True,
......
// Adapt from
// https://github.com/vllm-project/vllm/blob/v0.7.1/csrc/cutlass_extensions/gemm/collective/collective_buildler.hpp
// Modified from: cutlass/gemm/collective/builders/sm90_gmma_builder.inl
// clang-format off
#pragma once
#include <cutlass/gemm/collective/builders/sm90_gmma_builder.inl>
#include "cutlass_extensions/gemm/dispatch_policy.hpp"
#include "cutlass_extensions/gemm/collective/sm90_mma_tma_gmma_ss_warpspecialized_fp8_blockwise_scaling.hpp"
/////////////////////////////////////////////////////////////////////////////////////////////////
namespace cutlass::gemm::collective {
/////////////////////////////////////////////////////////////////////////////////////////////////
// GMMA_TMA_WS_SS (BlockScaled Builders)
template <
class ElementA,
class GmemLayoutATag,
int AlignmentA,
class ElementB,
class GmemLayoutBTag,
int AlignmentB,
class ElementAccumulator,
class TileShape_MNK,
class ClusterShape_MNK,
class StageCountType,
int ScaleGranularityM
>
struct CollectiveBuilder<
arch::Sm90,
arch::OpClassTensorOp,
ElementA,
GmemLayoutATag,
AlignmentA,
ElementB,
GmemLayoutBTag,
AlignmentB,
ElementAccumulator,
TileShape_MNK,
ClusterShape_MNK,
StageCountType,
KernelTmaWarpSpecializedCooperativeFP8BlockScaledSubGroupMAccum<ScaleGranularityM>,
cute::enable_if_t<
not detail::is_use_rmem_A<ElementA, GmemLayoutATag, ElementB, GmemLayoutBTag>()>
> {
using KernelScheduleType = KernelTmaWarpSpecializedCooperativeFP8BlockScaledSubGroupMAccum<ScaleGranularityM>;
static_assert(is_static<TileShape_MNK>::value);
static_assert(is_static<ClusterShape_MNK>::value);
#ifndef CUTLASS_SM90_COLLECTIVE_BUILDER_SUPPORTED
static_assert(cutlass::detail::dependent_false<ElementA>, "Unsupported Toolkit for SM90 Collective Builder\n");
#endif
static_assert(detail::is_aligned<ElementA, AlignmentA, ElementB, AlignmentB, detail::tma_alignment_bytes>(),
"Should meet TMA alignment requirement\n");
static constexpr bool IsArrayOfPointersGemm = (cute::is_any_of_v<KernelScheduleType,
KernelPtrArrayTmaWarpSpecializedCooperative,
KernelPtrArrayTmaWarpSpecializedPingpong>);
static constexpr bool IsFP8Input = detail::is_input_fp8<ElementA, ElementB>();
static_assert((!IsFP8Input || !IsArrayOfPointersGemm),
"KernelTmaWarpSpecializedCooperativeFP8BlockScaledAccum is only compatible with FP8 Blocked Scaled version right now.");
// For fp32 types, map to tf32 MMA value type
using ElementAMma = cute::conditional_t<cute::is_same_v<ElementA, float>, tfloat32_t, ElementA>;
using ElementBMma = cute::conditional_t<cute::is_same_v<ElementB, float>, tfloat32_t, ElementB>;
static constexpr cute::GMMA::Major GmmaMajorA = detail::gmma_ss_tag_to_major_A<ElementAMma, GmemLayoutATag>();
static constexpr cute::GMMA::Major GmmaMajorB = detail::gmma_ss_tag_to_major_B<ElementBMma, GmemLayoutBTag>();
static constexpr bool IsCooperative = cute::is_any_of_v<KernelScheduleType,
KernelTmaWarpSpecializedCooperative,
KernelPtrArrayTmaWarpSpecializedCooperative,
KernelTmaWarpSpecializedCooperativeFP8BlockScaledSubGroupMAccum<ScaleGranularityM>>;
using AtomLayoutMNK = cute::conditional_t<IsCooperative,
Layout<Shape<_2,_1,_1>>, Layout<Shape<_1,_1,_1>>>;
using TiledMma = decltype(cute::make_tiled_mma(cute::GMMA::ss_op_selector<
ElementAMma, ElementBMma, ElementAccumulator, TileShape_MNK, GmmaMajorA, GmmaMajorB>(), AtomLayoutMNK{}));
using GmemTiledCopyA = decltype(detail::sm90_cluster_shape_to_tma_atom(shape<1>(ClusterShape_MNK{})));
using GmemTiledCopyB = decltype(detail::sm90_cluster_shape_to_tma_atom(shape<0>(ClusterShape_MNK{})));
using SmemLayoutAtomA = decltype(detail::ss_smem_selector<
GmmaMajorA, ElementAMma, decltype(cute::get<0>(TileShape_MNK{})), decltype(cute::get<2>(TileShape_MNK{}))>());
using SmemLayoutAtomB = decltype(detail::ss_smem_selector<
GmmaMajorB, ElementBMma, decltype(cute::get<1>(TileShape_MNK{})), decltype(cute::get<2>(TileShape_MNK{}))>());
static constexpr size_t TensorMapStorage = IsArrayOfPointersGemm ? sizeof(cute::TmaDescriptor) * 2 /* for A and B */ : 0;
static constexpr int KernelSmemCarveout = static_cast<int>(TensorMapStorage);
static constexpr int PipelineStages = detail::compute_stage_count_or_override<detail::sm90_smem_capacity_bytes - KernelSmemCarveout,
ElementAMma, ElementBMma, TileShape_MNK>(StageCountType{});
using DispatchPolicy = MainloopSm90TmaGmmaWarpSpecializedBlockScalingSubGroupMFP8<PipelineStages, ClusterShape_MNK, KernelScheduleType, ScaleGranularityM>;
using SmemCopyAtomA = void;
using SmemCopyAtomB = void;
using CollectiveOp = CollectiveMma<
DispatchPolicy,
TileShape_MNK,
ElementA,
TagToStrideA_t<GmemLayoutATag>,
ElementB,
TagToStrideB_t<GmemLayoutBTag>,
TiledMma,
GmemTiledCopyA,
SmemLayoutAtomA,
SmemCopyAtomA,
cute::identity,
GmemTiledCopyB,
SmemLayoutAtomB,
SmemCopyAtomB,
cute::identity
>;
};
/////////////////////////////////////////////////////////////////////////////////////////////////
} // namespace cutlass::gemm::collective
/////////////////////////////////////////////////////////////////////////////////////////////////
// clang-format off
// Adapt from https://github.com/vllm-project/vllm/blob/v0.7.1/csrc/cutlass_extensions/gemm/collective/sm90_mma_tma_gmma_ss_warpspecialized_fp8_blockwise_scaling.hpp
// Adapted (Heavily) from: https://github.com/soundOfDestiny/cutlass/blob/9d997ce0dea4c5fa1a617db6b7ff29aa9235822c/include/cutlass/gemm/collective/sm90_mma_tma_gmma_ss_warpspecialized_fp8_blockwise_scaling.hpp
/***************************************************************************************************
* Copyright (c) 2023 - 2024 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
* SPDX-License-Identifier: BSD-3-Clause
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are met:
*
* 1. Redistributions of source code must retain the above copyright notice, this
* list of conditions and the following disclaimer.
*
* 2. Redistributions in binary form must reproduce the above copyright notice,
* this list of conditions and the following disclaimer in the documentation
* and/or other materials provided with the distribution.
*
* 3. Neither the name of the copyright holder nor the names of its
* contributors may be used to endorse or promote products derived from
* this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
* AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
* DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
* SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
* CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
* OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*
**************************************************************************************************/
#pragma once
#include "cutlass/cutlass.h"
#include "cutlass/gemm/dispatch_policy.hpp"
#include "cutlass/trace.h"
#include "cutlass/numeric_types.h"
#include "cute/arch/cluster_sm90.hpp"
#include "cute/arch/copy_sm80.hpp"
#include "cute/arch/copy_sm90.hpp"
#include "cute/algorithm/functional.hpp"
#include "cute/atom/mma_atom.hpp"
#include "cute/algorithm/gemm.hpp"
#include "cute/tensor_predicate.hpp"
#include "cute/numeric/arithmetic_tuple.hpp"
/////////////////////////////////////////////////////////////////////////////////////////////////
namespace cutlass::gemm::collective {
using namespace cute;
/////////////////////////////////////////////////////////////////////////////////////////////////
// WarpSpecialized Mainloop
template <
int Stages,
class ClusterShape,
class KernelSchedule,
int ScaleGranularityM_,
class TileShape_,
class ElementA_,
class StrideA_,
class ElementB_,
class StrideB_,
class TiledMma_,
class GmemTiledCopyA_,
class SmemLayoutAtomA_,
class SmemCopyAtomA_,
class TransformA_,
class GmemTiledCopyB_,
class SmemLayoutAtomB_,
class SmemCopyAtomB_,
class TransformB_>
struct CollectiveMma<
MainloopSm90TmaGmmaWarpSpecializedBlockScalingSubGroupMFP8<Stages, ClusterShape, KernelSchedule, ScaleGranularityM_>,
TileShape_,
ElementA_,
StrideA_,
ElementB_,
StrideB_,
TiledMma_,
GmemTiledCopyA_,
SmemLayoutAtomA_,
SmemCopyAtomA_,
TransformA_,
GmemTiledCopyB_,
SmemLayoutAtomB_,
SmemCopyAtomB_,
TransformB_>
{
//
// Type Aliases
//
using DispatchPolicy = MainloopSm90TmaGmmaWarpSpecializedBlockScalingSubGroupMFP8<Stages, ClusterShape, KernelSchedule, ScaleGranularityM_>;
using TileShape = TileShape_;
using ElementA = ElementA_;
using StrideA = StrideA_;
using ElementB = ElementB_;
using StrideB = StrideB_;
using TiledMma = TiledMma_;
using ElementAccumulator = typename TiledMma::ValTypeC;
using ElementBlockScale = ElementAccumulator;
using GmemTiledCopyA = GmemTiledCopyA_;
using GmemTiledCopyB = GmemTiledCopyB_;
using SmemLayoutAtomA = SmemLayoutAtomA_;
using SmemLayoutAtomB = SmemLayoutAtomB_;
using SmemCopyAtomA = SmemCopyAtomA_;
using SmemCopyAtomB = SmemCopyAtomB_;
using TransformA = TransformA_;
using TransformB = TransformB_;
using ArchTag = typename DispatchPolicy::ArchTag;
using CtaShape_MNK = decltype(shape_div(TileShape{}, ClusterShape{}));
using MainloopPipeline = cutlass::PipelineTmaAsync<DispatchPolicy::Stages>;
using PipelineState = cutlass::PipelineState<DispatchPolicy::Stages>;
using PipelineParams = typename MainloopPipeline::Params;
// Two threads per CTA are producers (1 for operand tile and 32 for scales)
static constexpr int NumProducerThreadEvents = 33;
static constexpr int ScaleGranularityM = ScaleGranularityM_ == 0 ? size<0>(TileShape{}) : ScaleGranularityM_;
static constexpr int ScaleMsPerTile = size<0>(TileShape{}) / ScaleGranularityM;
static_assert(cute::rank(SmemLayoutAtomA{}) == 2, "SmemLayoutAtom must be rank 2 (M/N, K)");
static_assert((size<0>(TileShape{}) % size<0>(SmemLayoutAtomA{})) == 0, "SmemLayoutAtom must evenly divide tile shape.");
static_assert((size<2>(TileShape{}) % size<1>(SmemLayoutAtomA{})) == 0, "SmemLayoutAtom must evenly divide tile shape.");
static_assert(cute::rank(SmemLayoutAtomB{}) == 2, "SmemLayoutAtom must be rank 2 (M/N, K)");
static_assert((size<1>(TileShape{}) % size<0>(SmemLayoutAtomB{})) == 0, "SmemLayoutAtom must evenly divide tile shape.");
static_assert((size<2>(TileShape{}) % size<1>(SmemLayoutAtomB{})) == 0, "SmemLayoutAtom must evenly divide tile shape.");
static_assert((size<0>(TileShape{}) % ScaleGranularityM) == 0, "FP8 scaling granularity must evenly divide tile shape along M.");
// Tile along modes in a way that maximizes the TMA box size.
using SmemLayoutA = decltype(tile_to_shape(
SmemLayoutAtomA{},
make_shape(shape<0>(TileShape{}), shape<2>(TileShape{}), Int<DispatchPolicy::Stages>{}),
cute::conditional_t< ::cutlass::gemm::detail::is_major<0,StrideA>(), Step<_2,_1,_3>, Step<_1,_2,_3>>{}));
using SmemLayoutB = decltype(tile_to_shape(
SmemLayoutAtomB{},
make_shape(shape<1>(TileShape{}), shape<2>(TileShape{}), Int<DispatchPolicy::Stages>{}),
cute::conditional_t< ::cutlass::gemm::detail::is_major<0,StrideB>(), Step<_2,_1,_3>, Step<_1,_2,_3>>{}));
// Block scaling gmem-to-smem copy atom
using SmemBlockScalingCopyAtomA = Copy_Atom<SM80_CP_ASYNC_CACHEALWAYS<ElementBlockScale>, ElementBlockScale>;
using SmemBlockScalingCopyAtomB = Copy_Atom<SM80_CP_ASYNC_CACHEALWAYS<ElementBlockScale>, ElementBlockScale>;
// Block scaling smem layout
using SmemLayoutScaleA = Layout<Shape<Int<ScaleMsPerTile>, Int<DispatchPolicy::Stages>>>;
using SmemLayoutScaleB = Layout<Shape<Int<DispatchPolicy::Stages>>, Stride<_1>>; // `ScaleNsPerTile` is always 1.
static_assert(DispatchPolicy::Stages >= 2, "Specialization requires Stages set to value 1 or more.");
static_assert(cute::is_base_of<cute::GMMA::DescriptorIterator, typename TiledMma::FrgTypeA>::value &&
cute::is_base_of<cute::GMMA::DescriptorIterator, typename TiledMma::FrgTypeB>::value,
"MMA atom must source both A and B operand from smem_desc for this mainloop.");
static_assert(cute::is_same_v<GmemTiledCopyA, SM90_TMA_LOAD> || cute::is_same_v<GmemTiledCopyA, SM90_TMA_LOAD_MULTICAST>,
"GmemTiledCopy - invalid SM90 TMA copy atom specified.");
static_assert(cute::is_same_v<GmemTiledCopyB, SM90_TMA_LOAD> || cute::is_same_v<GmemTiledCopyB, SM90_TMA_LOAD_MULTICAST>,
"GmemTiledCopy - invalid SM90 TMA copy atom specified.");
static_assert(cute::is_same_v<ElementAccumulator, ElementBlockScale>,
"ElementAccumulator and ElementBlockScale should be same datatype");
struct SharedStorage
{
struct TensorStorage : cute::aligned_struct<128> {
cute::array_aligned<typename TiledMma::ValTypeA, cute::cosize_v<SmemLayoutA>> smem_A; // mxk
cute::array_aligned<typename TiledMma::ValTypeB, cute::cosize_v<SmemLayoutB>> smem_B; // nxk
cute::array_aligned<ElementBlockScale, cute::cosize_v<SmemLayoutScaleA>> smem_scale_A; // ScaleMsPerTile x k
cute::array_aligned<ElementBlockScale, cute::cosize_v<SmemLayoutScaleB>> smem_scale_B; // 1xk
} tensors;
using PipelineStorage = typename MainloopPipeline::SharedStorage;
PipelineStorage pipeline;
};
using TensorStorage = typename SharedStorage::TensorStorage;
using PipelineStorage = typename SharedStorage::PipelineStorage;
// Host side kernel arguments
struct Arguments {
ElementA const* ptr_A;
StrideA dA;
ElementB const* ptr_B;
StrideB dB;
uint32_t mma_promotion_interval = 4;
ElementBlockScale const* ptr_scale_A;
ElementBlockScale const* ptr_scale_B;
};
// Device side kernel params
struct Params {
// Assumption: StrideA is congruent with Problem_MK
using TMA_A = decltype(make_tma_copy_A_sm90(
GmemTiledCopyA{},
make_tensor(static_cast<ElementA const*>(nullptr), repeat_like(StrideA{}, int32_t(0)), StrideA{}),
SmemLayoutA{}(_,_,0),
TileShape{},
ClusterShape{}));
// Assumption: StrideB is congruent with Problem_NK
using TMA_B = decltype(make_tma_copy_B_sm90(
GmemTiledCopyB{},
make_tensor(static_cast<ElementB const*>(nullptr), repeat_like(StrideB{}, int32_t(0)), StrideB{}),
SmemLayoutB{}(_,_,0),
TileShape{},
ClusterShape{}));
TMA_A tma_load_a;
TMA_B tma_load_b;
uint32_t tma_transaction_bytes = TmaTransactionBytes;
uint32_t tma_transaction_bytes_mk = TmaTransactionBytesMK;
uint32_t tma_transaction_bytes_nk = TmaTransactionBytesNK;
uint32_t mma_promotion_interval = 4;
// Block scaling factors for A and B
ElementBlockScale const* ptr_scale_A;
ElementBlockScale const* ptr_scale_B;
};
//
// Methods
//
template <class ProblemShape>
static constexpr Params
to_underlying_arguments(ProblemShape const& problem_shape, Arguments const& args, void* workspace) {
(void) workspace;
// Optionally append 1s until problem shape is rank-4 (MNKL), in case it is only rank-3 (MNK)
auto problem_shape_MNKL = append<4>(problem_shape, 1);
auto [M,N,K,L] = problem_shape_MNKL;
auto ptr_A = reinterpret_cast<ElementA const*>(args.ptr_A);
auto ptr_B = reinterpret_cast<ElementB const*>(args.ptr_B);
Tensor tensor_a = make_tensor(ptr_A, make_layout(make_shape(M,K,L), args.dA));
Tensor tensor_b = make_tensor(ptr_B, make_layout(make_shape(N,K,L), args.dB));
typename Params::TMA_A tma_load_a = make_tma_copy_A_sm90(
GmemTiledCopyA{},
tensor_a,
SmemLayoutA{}(_,_,cute::Int<0>{}),
TileShape{},
ClusterShape{});
typename Params::TMA_B tma_load_b = make_tma_copy_B_sm90(
GmemTiledCopyB{},
tensor_b,
SmemLayoutB{}(_,_,cute::Int<0>{}),
TileShape{},
ClusterShape{});
uint32_t transaction_bytes_mk = TmaTransactionBytesMK;
uint32_t transaction_bytes_nk = TmaTransactionBytesNK;
uint32_t transaction_bytes = transaction_bytes_mk + transaction_bytes_nk;
return {
tma_load_a,
tma_load_b,
transaction_bytes,
transaction_bytes_mk,
transaction_bytes_nk,
args.mma_promotion_interval,
args.ptr_scale_A,
args.ptr_scale_B
};
}
template<class ProblemShape>
static bool
can_implement(
ProblemShape const& problem_shape,
[[maybe_unused]] Arguments const& args) {
constexpr int tma_alignment_bits = 128;
auto problem_shape_MNKL = append<4>(problem_shape, 1);
auto [M,N,K,L] = problem_shape_MNKL;
bool implementable = true;
constexpr int min_tma_aligned_elements_A = tma_alignment_bits / cutlass::sizeof_bits<ElementA>::value;
implementable = implementable && cutlass::detail::check_alignment<min_tma_aligned_elements_A>(cute::make_shape(M,K,L), StrideA{});
constexpr int min_tma_aligned_elements_B = tma_alignment_bits / cutlass::sizeof_bits<ElementB>::value;
implementable = implementable && cutlass::detail::check_alignment<min_tma_aligned_elements_B>(cute::make_shape(N,K,L), StrideB{});
/* MMA promotion interval should be a multiple of 4, since each mainloop iteration would issue 4 MMA instructions. */
implementable = implementable && (args.mma_promotion_interval % 4 == 0);
if (!implementable) {
CUTLASS_TRACE_HOST(" CAN IMPLEMENT: Problem Size doesn't meet the minimum alignment requirements for TMA.\n");
}
return implementable;
}
static constexpr int K_PIPE_MAX = DispatchPolicy::Stages;
static constexpr int K_PIPE_MMAS = 1;
static constexpr uint32_t TmaTransactionBytesMK =
cutlass::bits_to_bytes(size<0>(SmemLayoutA{}) * size<1>(SmemLayoutA{}) * static_cast<uint32_t>(sizeof_bits<ElementA>::value));
static constexpr uint32_t TmaTransactionBytesNK =
cutlass::bits_to_bytes(size<0>(SmemLayoutB{}) * size<1>(SmemLayoutB{}) * static_cast<uint32_t>(sizeof_bits<ElementB>::value));
static constexpr uint32_t TmaTransactionBytes = TmaTransactionBytesMK + TmaTransactionBytesNK;
/// Issue Tma Descriptor Prefetch -- ideally from a single thread for best performance
CUTLASS_DEVICE
static void prefetch_tma_descriptors(Params const& mainloop_params)
{
cute::prefetch_tma_descriptor(mainloop_params.tma_load_a.get_tma_descriptor());
cute::prefetch_tma_descriptor(mainloop_params.tma_load_b.get_tma_descriptor());
}
/// Set up the data needed by this collective for load and mma.
/// Returns a tuple of tensors. The collective and the kernel layer have the contract
/// Returned tuple must contain at least two elements, with the first two elements being:
/// gA_mkl - The tma tensor, A after a local tile so it has shape (BLK_M,BLK_K,m,k,l)
/// gB_nkl - The tma tensor, B after a local tile so it has shape (BLK_N,BLK_K,n,k,l)
template <class ProblemShape_MNKL>
CUTLASS_DEVICE auto
load_init(ProblemShape_MNKL const& problem_shape_MNKL, Params const& mainloop_params) const {
using X = Underscore;
// Separate out problem shape for convenience
auto [M,N,K,L] = problem_shape_MNKL;
// TMA requires special handling of strides to deal with coord codomain mapping
// Represent the full tensors -- get these from TMA
Tensor mA_mkl = mainloop_params.tma_load_a.get_tma_tensor(make_shape(M,K,L)); // (m,k,l)
Tensor mB_nkl = mainloop_params.tma_load_b.get_tma_tensor(make_shape(N,K,L)); // (n,k,l)
// Make tiled views, defer the slice
Tensor gA_mkl = local_tile(mA_mkl, TileShape{}, make_coord(_,_,_), Step<_1, X,_1>{}); // (BLK_M,BLK_K,m,k,l)
Tensor gB_nkl = local_tile(mB_nkl, TileShape{}, make_coord(_,_,_), Step< X,_1,_1>{}); // (BLK_N,BLK_K,n,k,l)
constexpr auto scales_m = Int<ScaleMsPerTile>{};
auto tM = get<2>(gA_mkl.shape());
auto tN = get<2>(gB_nkl.shape());
auto tK = get<3>(gA_mkl.shape());
// Make the tiled views of scale tensors
auto scaleA_shape = make_shape(M / ScaleGranularityM, tK, L); // (scale_m,k,l)
auto scaleA_layout = make_ordered_layout(scaleA_shape, Step<_0, _1, _2>{});
auto scaleB_shape = make_shape(tN, tK, L); // (n,k,l)
auto scaleB_layout = make_ordered_layout(scaleB_shape, Step<_1, _0, _2>{});
// Note that mScaleA_mkl and mScaleB_nkl are already blocked tiled in the `m` host and
// gScaleA_mkl and gScaleB_nkl in `g` global memory are same as mScaleA_mkl and mScaleB_nkl.
Tensor mScaleA_mkl = make_tensor(make_gmem_ptr(mainloop_params.ptr_scale_A), scaleA_layout); // (scale_m,k,l)
Tensor mScaleB_nkl = make_tensor(make_gmem_ptr(mainloop_params.ptr_scale_B), scaleB_layout); // (n,k,l)
return cute::make_tuple(gA_mkl, gB_nkl, mScaleA_mkl, mScaleB_nkl);
}
/// Perform a collective-scoped matrix multiply-accumulate
/// Producer Perspective
template <
class TensorA, class TensorB,
class TensorScaleA, class TensorScaleB,
class KTileIterator, class BlockCoord
>
CUTLASS_DEVICE void
load(
Params const& mainloop_params,
MainloopPipeline pipeline,
PipelineState smem_pipe_write,
cute::tuple<TensorA, TensorB, TensorScaleA, TensorScaleB> const& load_inputs,
BlockCoord const& blk_coord,
KTileIterator k_tile_iter, int k_tile_count,
int thread_idx,
uint32_t block_rank_in_cluster,
TensorStorage& shared_tensors) {
int lane_predicate = cute::elect_one_sync();
// Blockscaling: Tma loads for load_input and CpAsync for load_scale
Tensor sA = make_tensor(make_smem_ptr(shared_tensors.smem_A.data()), SmemLayoutA{}); // (BLK_M,BLK_K,PIPE)
Tensor sB = make_tensor(make_smem_ptr(shared_tensors.smem_B.data()), SmemLayoutB{}); // (BLK_N,BLK_K,PIPE)
Tensor sScaleA = make_tensor(cute::make_smem_ptr(shared_tensors.smem_scale_A.data()), SmemLayoutScaleA{}); // (ScaleMsPerTile,k)
Tensor sScaleB = make_tensor(cute::make_smem_ptr(shared_tensors.smem_scale_B.data()), SmemLayoutScaleB{}); // (k)
//
// Prepare the TMA loads for A and B
//
constexpr uint32_t cluster_shape_x = get<0>(ClusterShape());
uint2 cluster_local_block_id = {block_rank_in_cluster % cluster_shape_x, block_rank_in_cluster / cluster_shape_x};
Tensor gA_mkl = get<0>(load_inputs);
Tensor gB_nkl = get<1>(load_inputs);
auto block_tma_a = mainloop_params.tma_load_a.get_slice(cluster_local_block_id.y);
auto block_tma_b = mainloop_params.tma_load_b.get_slice(cluster_local_block_id.x);
// Partition the inputs based on the current block coordinates.
auto [m_coord, n_coord, k_coord, l_coord] = blk_coord;
Tensor gA = gA_mkl(_,_,m_coord,_,l_coord); // (BLK_M,BLK_K,k)
Tensor gB = gB_nkl(_,_,n_coord,_,l_coord); // (BLK_N,BLK_K,k)
// Block scaling: load_scale has scaling tensors in global memory which are not tiled
Tensor mScaleA_mkl = get<2>(load_inputs);
Tensor mScaleB_nkl = get<3>(load_inputs);
auto scales_m = get<0>(mScaleA_mkl.shape());
Tensor cScaleA_mkl = make_identity_tensor(mScaleA_mkl.shape());
Tensor gScaleA = local_tile(
mScaleA_mkl, make_tile(Int<ScaleMsPerTile>{}),
make_coord(m_coord,_,l_coord)); // (ScaleMsPerTile,k,1)
Tensor cScaleA = local_tile(
cScaleA_mkl, make_tile(Int<ScaleMsPerTile>{}),
make_coord(m_coord,_,l_coord));
Tensor gScaleB = mScaleB_nkl(n_coord,_,l_coord); // (1,k,1)
// TODO: test `scale_copy_a` with `ScaleMsPerTile` < 128
TiledCopy scale_copy_a = make_tiled_copy(SmemBlockScalingCopyAtomA{},
Layout<Shape<_32, _1>>{}, Layout<Shape<_4, _1>>{}); // (1,1,1)
TiledCopy scale_copy_b = make_tiled_copy(SmemBlockScalingCopyAtomB{},
Layout<Shape<_1>>{}, Layout<Shape<_1>>{}); // (1,1,1)
ThrCopy thr_scale_copy_a = scale_copy_a.get_slice(threadIdx.x);
ThrCopy thr_scale_copy_b = scale_copy_b.get_slice(threadIdx.x);
Tensor tAgA_ScaleA = thr_scale_copy_a.partition_S(gScaleA);
Tensor tAcA_ScaleA = thr_scale_copy_a.partition_S(cScaleA);
Tensor tAsA_ScaleA = thr_scale_copy_a.partition_D(sScaleA);
Tensor tBgB_ScaleB = thr_scale_copy_b.partition_S(gScaleB);
Tensor tBsB_ScaleB = thr_scale_copy_b.partition_D(sScaleB);
// Applies the mapping from block_tma_a
Tensor tAgA = block_tma_a.partition_S(gA); // (TMA,TMA_M,TMA_K,k)
Tensor tAsA = block_tma_a.partition_D(sA); // (TMA,TMA_M,TMA_K,PIPE)
Tensor tBgB = block_tma_b.partition_S(gB); // (TMA,TMA_N,TMA_K,k)
Tensor tBsB = block_tma_b.partition_D(sB); // (TMA,TMA_N,TMA_K,PIPE)
uint16_t mcast_mask_a = 0;
uint16_t mcast_mask_b = 0;
// Issue TmaLoads for GEMM operands A/B and CpAsync for scale tensors
// Maps the tile -> block, value
if constexpr (cute::is_same_v<GmemTiledCopyA, SM90_TMA_LOAD_MULTICAST>) {
auto block_layout = Layout<typename DispatchPolicy::ClusterShape>{}; // (m,n) -> block_id
for (int n = 0; n < size<1>(block_layout); ++n) {
mcast_mask_a |= (uint16_t(1) << block_layout(cluster_local_block_id.x,n,Int<0>{}));
}
}
if constexpr (cute::is_same_v<GmemTiledCopyB, SM90_TMA_LOAD_MULTICAST>) {
auto block_layout = Layout<typename DispatchPolicy::ClusterShape>{}; // (m,n) -> block_id
for (int m = 0; m < size<0>(block_layout); ++m) {
mcast_mask_b |= (uint16_t(1) << block_layout(m,cluster_local_block_id.y,Int<0>{}));
}
}
// Allocate predicate tensors for a_scales (since we can't guarantee that
// all scales are valid, since we could have a partial tiles along M)
Tensor tApA_ScaleA = make_tensor<bool>(shape(tAsA_ScaleA(_,_,0)));
#pragma unroll
for (int i = 0; i < size(tApA_ScaleA); ++i) {
tApA_ScaleA(i) = get<0>(tAcA_ScaleA(i)) < scales_m;
}
// Mainloop
CUTLASS_PRAGMA_NO_UNROLL
for ( ; k_tile_count > 0; --k_tile_count) {
// LOCK smem_pipe_write for _writing_
pipeline.producer_acquire(smem_pipe_write);
//
// Copy gmem to smem for *k_tile_iter
//
int write_stage = smem_pipe_write.index();
using BarrierType = typename MainloopPipeline::ProducerBarrierType;
BarrierType* tma_barrier = pipeline.producer_get_barrier(smem_pipe_write);
// Copy operands A and B from global memory to shared memory
if (lane_predicate) copy(mainloop_params.tma_load_a.with(*tma_barrier, mcast_mask_a), tAgA(_,_,_,*k_tile_iter), tAsA(_,_,_,write_stage));
if (lane_predicate) copy(mainloop_params.tma_load_b.with(*tma_barrier, mcast_mask_b), tBgB(_,_,_,*k_tile_iter), tBsB(_,_,_,write_stage));
// Copy scale tensors from global memory to shared memory
copy_if(scale_copy_a, tApA_ScaleA, tAgA_ScaleA(_,_,*k_tile_iter), tAsA_ScaleA(_,_,write_stage));
copy(scale_copy_b, tBgB_ScaleB(_,*k_tile_iter), tBsB_ScaleB(_,write_stage));
pipeline.producer_commit(smem_pipe_write, cutlass::arch::cpasync_barrier_arrive_noinc);
++k_tile_iter;
// Advance smem_pipe_write
++smem_pipe_write;
}
}
/// Perform a Producer Epilogue to prevent early exit of blocks in a Cluster
CUTLASS_DEVICE void
load_tail(
MainloopPipeline pipeline,
PipelineState smem_pipe_write) {
int lane_predicate = cute::elect_one_sync();
// Issue the epilogue waits
if (lane_predicate) {
/* This helps avoid early exit of blocks in Cluster
* Waits for all stages to either be released (all
* Consumer UNLOCKs), or if the stage was never used
* then would just be acquired since the phase was
* still inverted from make_producer_start_state
*/
pipeline.producer_tail(smem_pipe_write);
}
}
/// Perform a collective-scoped matrix multiply-accumulate
/// Consumer Perspective
template <
class FrgTensorC
>
CUTLASS_DEVICE void
mma(MainloopPipeline pipeline,
PipelineState smem_pipe_read,
FrgTensorC& accum,
int k_tile_count,
int thread_idx,
TensorStorage& shared_tensors,
Params const& mainloop_params) {
static_assert(is_rmem<FrgTensorC>::value, "C tensor must be rmem resident.");
static_assert(cute::rank(SmemLayoutA{}) == 3, "Smem layout must be rank 3.");
static_assert(cute::rank(SmemLayoutB{}) == 3, "Smem layout must be rank 3.");
static_assert(cute::is_void_v<SmemCopyAtomA>,
"SM90 GMMA mainloops cannot have a non-void copy atom for smem sourced instructions.");
static_assert(cute::is_void_v<SmemCopyAtomB>,
"SM90 GMMA mainloops cannot have a non-void copy atom for smem sourced instructions.");
Tensor sA = make_tensor(make_smem_ptr(shared_tensors.smem_A.data()), SmemLayoutA{}); // (BLK_M,BLK_K,PIPE)
Tensor sB = make_tensor(make_smem_ptr(shared_tensors.smem_B.data()), SmemLayoutB{}); // (BLK_N,BLK_K,PIPE)
// Block scaling
Tensor sScaleAViewAsC = make_tensor(cute::make_smem_ptr(shared_tensors.smem_scale_A.data()),
Layout<
Shape<Shape<Int<ScaleGranularityM>, Int<ScaleMsPerTile>>, cute::tuple_element_t<1, TileShape>, Int<DispatchPolicy::Stages>>,
Stride<Stride<_0, _1>, _0, Int<ScaleMsPerTile>>
>{}); // ((ScaleGranularityM,ScaleMsPerTile),n,k)
Tensor sScaleB = make_tensor(cute::make_smem_ptr(shared_tensors.smem_scale_B.data()), SmemLayoutScaleB{}); // (k)
//
// Define C accumulators and A/B partitioning
//
// Layout of warp group to thread mapping
static_assert(stride<0>(typename TiledMma::ALayout{}) == 0 and
stride<0>(typename TiledMma::BLayout{}) == 0 and
size<0>(typename TiledMma::ALayout{}) == NumThreadsPerWarpGroup and
size<0>(typename TiledMma::BLayout{}) == NumThreadsPerWarpGroup,
"Stride of the first mode must be 0 and the size of the mode must be NumThreadsPerWarpGroup");
constexpr int MmaWarpGroups = size(TiledMma{}) / NumThreadsPerWarpGroup;
Layout warp_group_thread_layout = make_layout(Int<MmaWarpGroups>{},
Int<NumThreadsPerWarpGroup>{});
int warp_group_idx = __shfl_sync(0xFFFFFFFF, thread_idx / NumThreadsPerWarpGroup, 0);
TiledMma tiled_mma;
auto thread_mma = tiled_mma.get_slice(warp_group_thread_layout(warp_group_idx));
Tensor tCsScaleAViewAsC = tiled_mma.get_slice(thread_idx).partition_C(sScaleAViewAsC); // (MMA,MMA_M,MMA_N,PIPE), `thread_mma` above is correct when partitioning A and B, but it is not correct when partitioning C.
Tensor tCsA = thread_mma.partition_A(sA); // (MMA,MMA_M,MMA_K,PIPE)
Tensor tCsB = thread_mma.partition_B(sB); // (MMA,MMA_N,MMA_K,PIPE)
// Allocate "fragments/descriptors"
Tensor tCrA = thread_mma.make_fragment_A(tCsA); // (MMA,MMA_M,MMA_K,PIPE)
Tensor tCrB = thread_mma.make_fragment_B(tCsB); // (MMA,MMA_N,MMA_K,PIPE)
CUTE_STATIC_ASSERT_V(size<1>(tCsA) == size<1>(accum)); // M
CUTE_STATIC_ASSERT_V(size<1>(tCsB) == size<2>(accum)); // N
CUTE_STATIC_ASSERT_V(size<2>(tCsA) == size<2>(tCsB)); // K
CUTE_STATIC_ASSERT_V(size<3>(tCsA) == size<3>(tCsB)); // PIPE
CUTE_STATIC_ASSERT_V(Int<DispatchPolicy::Stages>{} == size<2>(sA)); // PIPE
CUTE_STATIC_ASSERT_V(Int<DispatchPolicy::Stages>{} == size<2>(sB)); // PIPE
//
// PIPELINED MAIN LOOP
//
static_assert((0 <= K_PIPE_MMAS) && (K_PIPE_MMAS < K_PIPE_MAX),
"ERROR : Incorrect number of MMAs in flight");
// We release buffers to producer warps(dma load) with some mmas in flight
PipelineState smem_pipe_release = smem_pipe_read;
// Per block scale values for operand A and B
using RegLayoutScaleAViewAsC = decltype(make_layout_like(tCsScaleAViewAsC(_, _, _, 0).layout())); // `make_layout_like` makes a compact layout.
using RegLayoutScaleAEssential = decltype(filter_zeros(RegLayoutScaleAViewAsC{}.stride(), RegLayoutScaleAViewAsC{}.shape())); // an interface to traverse the underlying storage for the compact layout mentioned above
Tensor tCrScaleAViewAsC = make_tensor<ElementBlockScale>(RegLayoutScaleAViewAsC{}); // (MMA,MMA_M,MMA_N)
ElementBlockScale scale_b;
// Prologue GMMAs
int prologue_mma_count = min(K_PIPE_MMAS, k_tile_count);
tiled_mma.accumulate_ = GMMA::ScaleOut::Zero;
GmmaFP8Accumulation accumulation(accum, mainloop_params.mma_promotion_interval, size<2>(tCrA));
warpgroup_fence_operand(accumulation());
CUTLASS_PRAGMA_UNROLL
for (int k_tile_prologue = prologue_mma_count; k_tile_prologue > 0; --k_tile_prologue)
{
// WAIT on smem_pipe_read until its data are available (phase bit flips from rdPhaseBit value)
auto barrier_token = pipeline.consumer_try_wait(smem_pipe_read);
pipeline.consumer_wait(smem_pipe_read, barrier_token);
if (accumulation.prepare_if_needed()) {
tiled_mma.accumulate_ = GMMA::ScaleOut::Zero;
}
int read_stage = smem_pipe_read.index();
// Load per block scale values from shared memory to registers.
scale_b = sScaleB[read_stage];
CUTLASS_PRAGMA_UNROLL
for (int i = 0; i < size(RegLayoutScaleAEssential{}); i++) {
tCrScaleAViewAsC.data()[i] = tCsScaleAViewAsC(_, _, _, read_stage)(idx2crd(i, RegLayoutScaleAEssential{}));
}
if constexpr (ScaleMsPerTile == 1) {
static_assert(size(RegLayoutScaleAEssential{}) == 1);
tCrScaleAViewAsC.data()[0] = __shfl_sync(0xffffffff, tCrScaleAViewAsC.data()[0] * scale_b, 0); // `tCrScaleAViewAsC.data()[0]` are all same in a warp group when `ScaleMsPerTile == 1`.
} else {
CUTLASS_PRAGMA_UNROLL
for (int i = 0; i < size(RegLayoutScaleAEssential{}); i++) {
tCrScaleAViewAsC.data()[i] = tCrScaleAViewAsC.data()[i] * scale_b;
}
}
warpgroup_arrive();
// Unroll the K mode manually to set scale D to 1
CUTLASS_PRAGMA_UNROLL
for (int k_block = 0; k_block < size<2>(tCrA); ++k_block) {
// (V,M,K) x (V,N,K) => (V,M,N)
cute::gemm(tiled_mma, tCrA(_,_,k_block,read_stage), tCrB(_,_,k_block,read_stage), accumulation());
tiled_mma.accumulate_ = GMMA::ScaleOut::One;
}
warpgroup_commit_batch();
// Block scale the accumulators with reg tensor `tCrScaleAViewAsC`
accumulation.scale_if_needed(tCrScaleAViewAsC);
++smem_pipe_read;
}
warpgroup_fence_operand(accumulation());
// Mainloop GMMAs
k_tile_count -= prologue_mma_count;
CUTLASS_PRAGMA_NO_UNROLL
for ( ; k_tile_count > 0; --k_tile_count)
{
// WAIT on smem_pipe_read until its data are available (phase bit flips from rdPhaseBit value)
auto barrier_token = pipeline.consumer_try_wait(smem_pipe_read);
pipeline.consumer_wait(smem_pipe_read, barrier_token);
//
// Compute on k_tile
//
int read_stage = smem_pipe_read.index();
// Load per block scale values from shared memory to registers (at most twice per block along M and exactly once per block along N)
scale_b = sScaleB[read_stage];
CUTLASS_PRAGMA_UNROLL
for (int i = 0; i < size(RegLayoutScaleAEssential{}); i++) {
tCrScaleAViewAsC.data()[i] = tCsScaleAViewAsC(_, _, _, read_stage)(idx2crd(i, RegLayoutScaleAEssential{}));
}
if constexpr (ScaleMsPerTile == 1) {
static_assert(size(RegLayoutScaleAEssential{}) == 1);
tCrScaleAViewAsC.data()[0] = __shfl_sync(0xffffffff, tCrScaleAViewAsC.data()[0] * scale_b, 0); // `tCrScaleAViewAsC.data()[0]` are all same in a warp group when `ScaleMsPerTile == 1`.
} else {
CUTLASS_PRAGMA_UNROLL
for (int i = 0; i < size(RegLayoutScaleAEssential{}); i++) {
tCrScaleAViewAsC.data()[i] = tCrScaleAViewAsC.data()[i] * scale_b;
}
}
if (accumulation.prepare_if_needed()) {
tiled_mma.accumulate_ = GMMA::ScaleOut::Zero;
}
warpgroup_fence_operand(accumulation());
warpgroup_arrive();
// Unroll the K mode manually to set scale D to 1
CUTLASS_PRAGMA_UNROLL
for (int k_block = 0; k_block < size<2>(tCrA); ++k_block) {
// (V,M,K) x (V,N,K) => (V,M,N)
cute::gemm(tiled_mma, tCrA(_,_,k_block,read_stage), tCrB(_,_,k_block,read_stage), accumulation());
tiled_mma.accumulate_ = GMMA::ScaleOut::One;
}
warpgroup_commit_batch();
/// Wait on the GMMA barrier for K_PIPE_MMAS (or fewer) outstanding to ensure smem_pipe_write is consumed
warpgroup_wait<K_PIPE_MMAS>();
warpgroup_fence_operand(accumulation());
// Block scale the accumulators with reg tensor `tCrScaleAViewAsC`
accumulation.scale_if_needed(tCrScaleAViewAsC);
pipeline.consumer_release(smem_pipe_release); // UNLOCK smem_pipe_release, done _computing_ on it
// Advance smem_pipe_read and smem_pipe_release
++smem_pipe_read;
++smem_pipe_release;
}
accumulation.scale_residue_if_needed(tCrScaleAViewAsC);
warpgroup_fence_operand(accumulation());
}
/// Perform a Consumer Epilogue to release all buffers
CUTLASS_DEVICE void
mma_tail(MainloopPipeline pipeline, PipelineState smem_pipe_release, int k_tile_count) {
// Prologue GMMAs
int prologue_mma_count = min(K_PIPE_MMAS, k_tile_count);
k_tile_count -= prologue_mma_count;
smem_pipe_release.advance(k_tile_count);
// Wait on all GMMAs to complete
warpgroup_wait<0>();
for (int count = 0; count < prologue_mma_count; ++count) {
pipeline.consumer_release(smem_pipe_release); // UNLOCK smem_pipe_release, done _computing_ on it
++smem_pipe_release;
}
}
};
/////////////////////////////////////////////////////////////////////////////////////////////////
} // namespace cutlass::gemm::collective
/////////////////////////////////////////////////////////////////////////////////////////////////
// Adapt from https://github.com/vllm-project/vllm/blob/v0.7.1/csrc/cutlass_extensions/gemm/dispatch_policy.hpp
#pragma once
#include <cutlass/gemm/dispatch_policy.hpp>
namespace cutlass::gemm {
//////////////////////////////////////////////////////////////////////////////
// FP8 related policies (including Blocked Scaled Accumulation)
// `ScaleGranularityM` specifies scaling granularity along M, while zero-value
// `ScaleGranularityM` indicates that scaling granularity is
// `size<0>(TileShape_MNK{})` along M.
template <int ScaleGranularityM = 0>
struct KernelTmaWarpSpecializedCooperativeFP8BlockScaledSubGroupMAccum : KernelTmaWarpSpecializedCooperative {};
// n-buffer in smem (Hopper TMA), pipelined with Hopper GMMA and TMA, Warp
// specialized dynamic schedule For FP8 kernels with Block Scaling
template <
int Stages_,
class ClusterShape_ = Shape<_1, _1, _1>,
class KernelSchedule = KernelTmaWarpSpecialized,
int ScaleGranularityM = 0 // `ScaleGranularityM` specifies scaling granularity along M,
// while zero-value `ScaleGranularityM` indicates that scaling
// granularity is `size<0>(TileShape_MNK{})` along M.
>
struct MainloopSm90TmaGmmaWarpSpecializedBlockScalingSubGroupMFP8
: MainloopSm90TmaGmmaWarpSpecialized<Stages_, ClusterShape_, KernelSchedule> {
static_assert(
cute::
is_same_v<KernelSchedule, KernelTmaWarpSpecializedCooperativeFP8BlockScaledSubGroupMAccum<ScaleGranularityM>>,
"KernelSchedule must be one of the warp specialized policies");
};
//////////////////////////////////////////////////////////////////////////////
} // namespace cutlass::gemm
......@@ -30,13 +30,16 @@
#include <cutlass/gemm/kernel/gemm_universal.hpp>
#include <cutlass/util/packed_stride.hpp>
#include "cutlass_extensions/gemm/collective/collective_builder.hpp"
#include "cutlass_extensions/gemm/dispatch_policy.hpp"
#include "utils.h"
using namespace cute;
template <typename OutType, typename TileShape, typename ClusterShape, int ScaleGranularityM = 1>
template <
typename SchedulerType,
typename OutType,
typename TileShape,
typename ClusterShape,
typename ScaleGranularity>
void launch_sm90_fp8_blockwise_scaled_mm(
torch::Tensor& out,
const torch::Tensor& a,
......@@ -63,6 +66,9 @@ void launch_sm90_fp8_blockwise_scaled_mm(
using LayoutD = cutlass::layout::RowMajor;
constexpr int AlignmentD = AlignmentC;
static constexpr int ScaleGranularityM = size<0>(ScaleGranularity{});
static constexpr int ScaleGranularityN = size<1>(ScaleGranularity{});
using ArchTag = cutlass::arch::Sm90;
using OperatorClass = cutlass::arch::OpClassTensorOp;
using EpilogueSchedule = cutlass::epilogue::TmaWarpSpecializedCooperative;
......@@ -70,7 +76,7 @@ void launch_sm90_fp8_blockwise_scaled_mm(
using StoreEpilogueCompute = typename cutlass::epilogue::fusion::Sm90EVT<cutlass::epilogue::fusion::Sm90AccFetch>;
using KernelSchedule =
cutlass::gemm::KernelTmaWarpSpecializedCooperativeFP8BlockScaledSubGroupMAccum<ScaleGranularityM>;
cutlass::gemm::KernelTmaWarpSpecializedCooperativeFP8BlockScaledAccum<ScaleGranularityM, ScaleGranularityN>;
using CollectiveEpilogue = typename cutlass::epilogue::collective::CollectiveBuilder<
ArchTag,
OperatorClass,
......@@ -108,7 +114,7 @@ void launch_sm90_fp8_blockwise_scaled_mm(
Shape<int, int, int, int>, // Indicates ProblemShape
CollectiveMainloop,
CollectiveEpilogue,
cutlass::gemm::PersistentScheduler>;
SchedulerType>;
using Gemm = cutlass::gemm::device::GemmUniversalAdapter<GemmKernel>;
Gemm gemm_op;
......@@ -299,8 +305,26 @@ void sm90_fp8_blockwise_dispatch_shape(
const torch::Tensor& scales_a,
const torch::Tensor& scales_b) {
using TileShape = Shape<_128, _128, _128>;
using ClusterShape = Shape<_1, _1, _1>;
launch_sm90_fp8_blockwise_scaled_mm<OutType, TileShape, ClusterShape>(out, a, b, scales_a, scales_b);
using ClusterShape = Shape<_1, _2, _1>;
using ScaleGranularity = Shape<_1, _128, _128>;
auto k = a.size(1);
auto n = b.size(1);
if (k > 3 * n) {
launch_sm90_fp8_blockwise_scaled_mm<
cutlass::gemm::StreamKScheduler,
OutType,
TileShape,
ClusterShape,
ScaleGranularity>(out, a, b, scales_a, scales_b);
} else {
launch_sm90_fp8_blockwise_scaled_mm<
cutlass::gemm::PersistentScheduler,
OutType,
TileShape,
ClusterShape,
ScaleGranularity>(out, a, b, scales_a, scales_b);
}
}
template <typename OutType>
......@@ -372,10 +396,11 @@ torch::Tensor fp8_blockwise_scaled_mm(
#if defined(CUTLASS_ARCH_MMA_SM90_SUPPORTED)
#if defined CUDA_VERSION && CUDA_VERSION >= 12000
if (sm_version == 90) {
torch::Tensor scales_b_contiguous = scales_b.contiguous();
if (out_dtype == torch::kBFloat16) {
sm90_fp8_blockwise_dispatch_shape<cutlass::bfloat16_t>(out, mat_a, mat_b, scales_a, scales_b);
sm90_fp8_blockwise_dispatch_shape<cutlass::bfloat16_t>(out, mat_a, mat_b, scales_a, scales_b_contiguous);
} else {
sm90_fp8_blockwise_dispatch_shape<cutlass::half_t>(out, mat_a, mat_b, scales_a, scales_b);
sm90_fp8_blockwise_dispatch_shape<cutlass::half_t>(out, mat_a, mat_b, scales_a, scales_b_contiguous);
}
return out;
}
......
......@@ -82,9 +82,9 @@ def _test_accuracy_once(M, N, K, out_dtype, device):
print(f"M={M}, N={N}, K={K}, out_dtype={out_dtype}: OK")
@pytest.mark.parametrize("M", [1, 128, 512, 1024, 4096])
@pytest.mark.parametrize("N", [128, 512, 1024, 4096])
@pytest.mark.parametrize("K", [512, 1024, 4096, 8192, 16384])
@pytest.mark.parametrize("M", [1, 3, 5, 127, 128, 512, 1024, 4096])
@pytest.mark.parametrize("N", [128, 512, 1024, 4096, 8192, 14080])
@pytest.mark.parametrize("K", [512, 1024, 4096, 8192, 14080, 16384])
@pytest.mark.parametrize("out_dtype", [torch.bfloat16, torch.float16])
def test_accuracy(M, N, K, out_dtype):
_test_accuracy_once(M, N, K, out_dtype, "cuda")
......
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment