Unverified Commit e3ec6bf4 authored by fzyzcjy's avatar fzyzcjy Committed by GitHub
Browse files

Minor speed up block_quant_dequant (#6814)

parent b04df75a
...@@ -369,27 +369,15 @@ def block_quant_dequant( ...@@ -369,27 +369,15 @@ def block_quant_dequant(
The output is an unquantized tensor with dtype. The output is an unquantized tensor with dtype.
""" """
block_n, block_k = block_size[0], block_size[1] block_n, block_k = block_size[0], block_size[1]
n, k = x_q_block.shape *_, n, k = x_q_block.shape
n_tiles = (n + block_n - 1) // block_n
k_tiles = (k + block_k - 1) // block_k
assert n_tiles == x_s.shape[0]
assert k_tiles == x_s.shape[1]
x_dq_block = torch.empty_like(x_q_block, dtype=dtype)
for j in range(n_tiles): # ... n_scale k_scale -> ... (n_scale block_n) (k_scale block_k)
for i in range(k_tiles): x_scale_repeat = x_s.repeat_interleave(block_n, dim=-2).repeat_interleave(
x_q_block_tile = x_q_block[ block_k, dim=-1
j * block_n : min((j + 1) * block_n, n), )
i * block_k : min((i + 1) * block_k, k), x_scale_repeat = x_scale_repeat[..., :n, :k]
]
x_dq_block_tile = x_dq_block[
j * block_n : min((j + 1) * block_n, n),
i * block_k : min((i + 1) * block_k, k),
]
x_dq_block_tile[:, :] = x_q_block_tile.to(torch.float32) * x_s[j][i]
return x_dq_block return (x_q_block.to(torch.float32) * x_scale_repeat).to(dtype)
def channel_quant_to_tensor_quant( def channel_quant_to_tensor_quant(
......
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment