"vscode:/vscode.git/clone" did not exist on "1d67149511404350c0c0bced73773afb6fcbfa21"
Unverified Commit bd75690f authored by Xiaoyu Zhang's avatar Xiaoyu Zhang Committed by GitHub
Browse files

fix ep_moe_reorder kernel bugs (#6858)


Co-authored-by: default avatarJieXin Liang <Alcanderian@users.noreply.github.com>
parent 180ff5ee
import itertools
import torch import torch
import triton import triton
import triton.language as tl
from sgl_kernel import ep_moe_pre_reorder from sgl_kernel import ep_moe_pre_reorder
from sglang.srt.layers.moe.ep_moe.kernels import pre_reorder_triton_kernel from sglang.srt.layers.moe.ep_moe.kernels import pre_reorder_triton_kernel
...@@ -25,9 +22,15 @@ configs = [(bs,) for bs in batch_sizes] ...@@ -25,9 +22,15 @@ configs = [(bs,) for bs in batch_sizes]
) )
) )
def benchmark(batch_size, provider): def benchmark(batch_size, provider):
dtype = torch.float32 dtype = torch.bfloat16
device = torch.device("cuda") device = torch.device("cuda")
hidden_size, topk, start_expert_id, end_expert_id, block_size = 4096, 8, 0, 255, 512 hidden_size, topk, start_expert_id, end_expert_id, block_size = (
4096,
8,
0,
255,
512,
)
# Allocate fresh tensors for every run to match bench_moe_fused_gate style # Allocate fresh tensors for every run to match bench_moe_fused_gate style
def alloc_tensors(): def alloc_tensors():
...@@ -53,9 +56,9 @@ def benchmark(batch_size, provider): ...@@ -53,9 +56,9 @@ def benchmark(batch_size, provider):
quantiles = [0.5, 0.2, 0.8] quantiles = [0.5, 0.2, 0.8]
if provider == "cuda": if provider == "cuda":
inp, gout, s2d, tk_ids, scales = alloc_tensors()
def run_cuda(): def run_cuda():
inp, gout, s2d, tk_ids, scales = alloc_tensors()
ep_moe_pre_reorder( ep_moe_pre_reorder(
inp, inp,
gout, gout,
...@@ -71,9 +74,9 @@ def benchmark(batch_size, provider): ...@@ -71,9 +74,9 @@ def benchmark(batch_size, provider):
ms, min_ms, max_ms = triton.testing.do_bench(run_cuda, quantiles=quantiles) ms, min_ms, max_ms = triton.testing.do_bench(run_cuda, quantiles=quantiles)
elif provider == "triton": elif provider == "triton":
inp, gout, s2d, tk_ids, scales = alloc_tensors()
def run_triton(): def run_triton():
inp, gout, s2d, tk_ids, scales = alloc_tensors()
pre_reorder_triton_kernel[(batch_size,)]( pre_reorder_triton_kernel[(batch_size,)](
inp.view(-1), inp.view(-1),
gout.view(-1), gout.view(-1),
......
...@@ -7,9 +7,10 @@ ...@@ -7,9 +7,10 @@
#include "utils.h" #include "utils.h"
template <typename scalar_t>
__global__ void ep_pre_reorder_cuda_kernel( __global__ void ep_pre_reorder_cuda_kernel(
const float* __restrict__ input_ptr, const scalar_t* __restrict__ input_ptr,
float* __restrict__ gateup_input_ptr, scalar_t* __restrict__ gateup_input_ptr,
const int* __restrict__ src2dst_ptr, const int* __restrict__ src2dst_ptr,
const int* __restrict__ topk_ids_ptr, const int* __restrict__ topk_ids_ptr,
const float* __restrict__ a1_scales_ptr, const float* __restrict__ a1_scales_ptr,
...@@ -21,20 +22,20 @@ __global__ void ep_pre_reorder_cuda_kernel( ...@@ -21,20 +22,20 @@ __global__ void ep_pre_reorder_cuda_kernel(
int token_idx = blockIdx.x; int token_idx = blockIdx.x;
int tid = threadIdx.x; int tid = threadIdx.x;
const float* src_ptr = input_ptr + int64_t(token_idx) * hidden_size; const scalar_t* src_ptr = input_ptr + int64_t(token_idx) * hidden_size;
const int* token_src2dst = src2dst_ptr + token_idx * topk; const int* token_src2dst = src2dst_ptr + token_idx * topk;
const int* token_topk_ids = topk_ids_ptr + token_idx * topk; const int* token_topk_ids = topk_ids_ptr + token_idx * topk;
for (int k = 0; k < topk; ++k) {
int expert_id = token_topk_ids[k];
if (expert_id < start_expert_id || expert_id > end_expert_id) continue;
float scale = 1.0f; float scale = 1.0f;
if (a1_scales_ptr != nullptr and use_per_token_if_dynamic) { if (a1_scales_ptr != nullptr and use_per_token_if_dynamic) {
scale = 1.0f / a1_scales_ptr[token_idx]; scale = 1.0f / a1_scales_ptr[token_idx];
} }
for (int k = 0; k < topk; ++k) {
int expert_id = token_topk_ids[k];
if (expert_id < start_expert_id || expert_id > end_expert_id) continue;
if (a1_scales_ptr != nullptr) { if (a1_scales_ptr != nullptr) {
if (!use_per_token_if_dynamic) { if (!use_per_token_if_dynamic) {
scale = 1.0f / a1_scales_ptr[expert_id - start_expert_id]; scale = 1.0f / a1_scales_ptr[expert_id - start_expert_id];
...@@ -42,21 +43,27 @@ __global__ void ep_pre_reorder_cuda_kernel( ...@@ -42,21 +43,27 @@ __global__ void ep_pre_reorder_cuda_kernel(
} }
int dst_idx = token_src2dst[k]; int dst_idx = token_src2dst[k];
float* dst_ptr = gateup_input_ptr + int64_t(dst_idx) * hidden_size; scalar_t* dst_ptr = gateup_input_ptr + int64_t(dst_idx) * hidden_size;
constexpr uint32_t vec_size = 16 / sizeof(float); constexpr uint32_t vec_size = 16 / sizeof(scalar_t);
using vec_t = flashinfer::vec_t<float, vec_size>; using vec_t = flashinfer::vec_t<scalar_t, vec_size>;
int vec_elements = (hidden_size / vec_size) * vec_size;
for (int idx = tid; idx < hidden_size / vec_size; idx += blockDim.x) { for (int idx = tid; idx < hidden_size / vec_size; idx += blockDim.x) {
vec_t input_vec, output_vec; vec_t input_vec, output_vec;
input_vec.cast_load(src_ptr + idx * vec_size); input_vec.cast_load(src_ptr + idx * vec_size);
#pragma unroll #pragma unroll
for (uint32_t i = 0; i < vec_size; ++i) { for (uint32_t i = 0; i < vec_size; ++i) {
float val = static_cast<float>(input_vec[i]); float val = static_cast<float>(input_vec[i]);
output_vec[i] = val * scale; output_vec[i] = static_cast<scalar_t>(val * scale);
} }
output_vec.cast_store(dst_ptr + idx * vec_size); output_vec.cast_store(dst_ptr + idx * vec_size);
} }
for (int idx = vec_elements + tid; idx < hidden_size; idx += blockDim.x) {
float val = static_cast<float>(src_ptr[idx]);
dst_ptr[idx] = static_cast<scalar_t>(val * scale);
}
} }
} }
...@@ -75,9 +82,11 @@ void ep_moe_pre_reorder( ...@@ -75,9 +82,11 @@ void ep_moe_pre_reorder(
dim3 grid(total_blocks); dim3 grid(total_blocks);
dim3 block(block_size); dim3 block(block_size);
int hidden_size = input.size(1); int hidden_size = input.size(1);
ep_pre_reorder_cuda_kernel<<<grid, block>>>(
input.data_ptr<float>(), DISPATCH_PYTORCH_DTYPE_TO_CTYPE_FLOAT_FP16(input.scalar_type(), scalar_t, [&] {
gateup_input.data_ptr<float>(), ep_pre_reorder_cuda_kernel<scalar_t><<<grid, block>>>(
static_cast<scalar_t*>(input.data_ptr()),
static_cast<scalar_t*>(gateup_input.data_ptr()),
src2dst.data_ptr<int>(), src2dst.data_ptr<int>(),
topk_ids.data_ptr<int>(), topk_ids.data_ptr<int>(),
a1_scales.defined() ? a1_scales.data_ptr<float>() : nullptr, a1_scales.defined() ? a1_scales.data_ptr<float>() : nullptr,
...@@ -86,4 +95,6 @@ void ep_moe_pre_reorder( ...@@ -86,4 +95,6 @@ void ep_moe_pre_reorder(
topk, topk,
hidden_size, hidden_size,
use_per_token_if_dynamic); use_per_token_if_dynamic);
return true;
});
} }
import itertools
import pytest
import torch
from sgl_kernel import ep_moe_pre_reorder
from sglang.srt.layers.moe.ep_moe.kernels import pre_reorder_triton_kernel
def create_test_tensors(
batch_size: int,
hidden_size: int,
topk: int,
start_expert_id: int,
end_expert_id: int,
dtype: torch.dtype,
device: torch.device,
use_per_token_if_dynamic: bool = True,
):
input_tensor = torch.randn(batch_size, hidden_size, dtype=dtype, device=device)
# Ensure src2dst has no duplicate destinations to avoid race conditions
total_tokens = batch_size * topk
dst_indices = torch.randperm(total_tokens, device=device, dtype=torch.int32)
src2dst = dst_indices.view(batch_size, topk)
topk_ids = torch.randint(
start_expert_id,
end_expert_id + 1,
(batch_size, topk),
dtype=torch.int32,
device=device,
)
if use_per_token_if_dynamic:
a1_scales = (
torch.rand(batch_size, dtype=torch.float32, device=device) * 0.8 + 0.2
)
else:
a1_scales = (
torch.rand(
end_expert_id - start_expert_id + 1, dtype=torch.float32, device=device
)
* 0.8
+ 0.2
)
return input_tensor, src2dst, topk_ids, a1_scales
def run_cuda_kernel(
input_tensor: torch.Tensor,
gateup_input: torch.Tensor,
src2dst: torch.Tensor,
topk_ids: torch.Tensor,
a1_scales: torch.Tensor,
start_expert_id: int,
end_expert_id: int,
topk: int,
use_per_token_if_dynamic: bool,
):
ep_moe_pre_reorder(
input_tensor,
gateup_input,
src2dst,
topk_ids,
a1_scales,
start_expert_id,
end_expert_id,
topk,
use_per_token_if_dynamic,
)
return gateup_input
def run_triton_kernel(
input_tensor: torch.Tensor,
gateup_input: torch.Tensor,
src2dst: torch.Tensor,
topk_ids: torch.Tensor,
a1_scales: torch.Tensor,
start_expert_id: int,
end_expert_id: int,
topk: int,
hidden_size: int,
use_per_token_if_dynamic: bool,
):
batch_size = input_tensor.size(0)
block_size = 512
pre_reorder_triton_kernel[(batch_size,)](
input_tensor,
gateup_input,
src2dst,
topk_ids,
a1_scales,
start_expert_id,
end_expert_id,
topk,
hidden_size,
block_size,
use_per_token_if_dynamic,
)
return gateup_input
@pytest.mark.parametrize(
"batch_size,hidden_size,topk",
list(itertools.product([32, 64, 128], [512, 1024, 2048], [4, 8])),
)
@pytest.mark.parametrize("dtype", [torch.float16, torch.bfloat16, torch.float32])
@pytest.mark.parametrize("use_per_token_if_dynamic", [True, False])
def test_ep_moe_pre_reorder_vs_triton(
batch_size: int,
hidden_size: int,
topk: int,
dtype: torch.dtype,
use_per_token_if_dynamic: bool,
):
device = torch.device("cuda")
start_expert_id = 0
end_expert_id = 15
(
input_tensor,
src2dst,
topk_ids,
a1_scales,
) = create_test_tensors(
batch_size,
hidden_size,
topk,
start_expert_id,
end_expert_id,
dtype,
device,
use_per_token_if_dynamic,
)
gateup_input_cuda = torch.empty(
batch_size * topk, hidden_size, dtype=dtype, device=device
)
gateup_input_triton = torch.empty(
batch_size * topk, hidden_size, dtype=dtype, device=device
)
cuda_output = run_cuda_kernel(
input_tensor,
gateup_input_cuda,
src2dst,
topk_ids,
a1_scales,
start_expert_id,
end_expert_id,
topk,
use_per_token_if_dynamic,
)
triton_output = run_triton_kernel(
input_tensor,
gateup_input_triton,
src2dst,
topk_ids,
a1_scales,
start_expert_id,
end_expert_id,
topk,
hidden_size,
use_per_token_if_dynamic,
)
torch.testing.assert_close(
cuda_output.float(),
triton_output.float(),
rtol=1e-5,
atol=1e-5,
)
if __name__ == "__main__":
pytest.main([__file__])
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment