Unverified Commit bcc213df authored by Mick's avatar Mick Committed by GitHub
Browse files

Model: Support Qwen 2.5 vl (#3258)

parent 39416e39
......@@ -4,7 +4,7 @@
- Llama / Llama 2 / Llama 3 / Llama 3.1 / Llama 3.2
- Mistral / Mixtral / Mistral NeMo / Mistral Small 3
- Gemma / Gemma 2
- Qwen / Qwen 2 / Qwen 2 MoE / Qwen 2 VL
- Qwen / Qwen 2 / Qwen 2 MoE / Qwen 2 VL / Qwen 2.5 VL
- DeepSeek / DeepSeek 2 / [DeepSeek 3](https://github.com/sgl-project/sglang/tree/main/benchmark/deepseek_v3)
- OLMoE
- [LLaVA-OneVision](https://llava-vl.github.io/blog/2024-08-05-llava-onevision/)
......@@ -54,7 +54,7 @@ To support a new model in SGLang, you only need to add a single file under [SGLa
You can learn from existing model implementations and create new files for the new models.
For most models, you should be able to find a similar model to start with (e.g., starting from Llama).
## How to Support a New vision LLM
## How to Support a New vLM
To support a new vision-language model (vLM) in SGLang, there are several key components in addition to the standard LLM.
......
......@@ -427,6 +427,8 @@ def match_chat_ml(model_path: str):
if "tinyllama" in model_path:
return get_chat_template("chatml")
# Now the suffix for qwen2 chat model is "instruct"
if "qwen" in model_path and "vl" in model_path:
return get_chat_template("qwen2-vl")
if "qwen" in model_path:
if "vl" in model_path:
return get_chat_template("qwen2-vl")
......@@ -443,6 +445,12 @@ def match_chat_ml(model_path: str):
return get_chat_template("chatml-llava")
@register_chat_template_matching_function
def match_chat_minicpm(model_path: str):
if "minicpm" in model_path:
return get_chat_template("minicpmv")
@register_chat_template_matching_function
def match_chat_yi(model_path: str):
model_path = model_path.lower()
......
from sglang.srt.configs.chatglm import ChatGLMConfig
from sglang.srt.configs.dbrx import DbrxConfig
from sglang.srt.configs.exaone import ExaoneConfig
from sglang.srt.configs.qwen2vl import Qwen2VLConfig, Qwen2VLVisionConfig
from sglang.srt.configs.qwen2_5_vl_config import (
Qwen2_5_VLConfig,
Qwen2_5_VLVisionConfig,
)
__all__ = [
"ExaoneConfig",
"Qwen2VLConfig",
"Qwen2VLVisionConfig",
"ChatGLMConfig",
"DbrxConfig",
"Qwen2_5_VLConfig",
"Qwen2_5_VLVisionConfig",
]
......@@ -403,6 +403,7 @@ def is_multimodal_model(model_architectures: List[str]):
or "LlavaVidForCausalLM" in model_architectures
or "MllamaForConditionalGeneration" in model_architectures
or "Qwen2VLForConditionalGeneration" in model_architectures
or "Qwen2_5_VLForConditionalGeneration" in model_architectures
or "MiniCPMV" in model_architectures
):
return True
......
# coding=utf-8
# Copyright 2024 The Qwen team, Alibaba Group and the HuggingFace Inc. team.
# All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Qwen2VL model configuration"""
from typing import Dict, Iterable, List, Optional, Union
import numpy as np
from transformers import (
AutoImageProcessor,
AutoProcessor,
BaseImageProcessor,
BatchFeature,
PretrainedConfig,
ProcessorMixin,
TensorType,
)
from transformers.image_transforms import (
convert_to_rgb,
normalize,
rescale,
resize,
to_channel_dimension_format,
)
from transformers.image_utils import (
ChannelDimension,
ImageInput,
PILImageResampling,
VideoInput,
get_image_size,
infer_channel_dimension_format,
is_pil_image,
is_valid_image,
make_list_of_images,
to_numpy_array,
valid_images,
validate_preprocess_arguments,
)
from transformers.modeling_rope_utils import rope_config_validation
from transformers.models.mllama.image_processing_mllama import is_valid_list_of_images
from transformers.models.qwen2_vl.image_processing_qwen2_vl import smart_resize
from transformers.processing_utils import ProcessingKwargs, Unpack, VideosKwargs
from transformers.tokenization_utils_base import PreTokenizedInput, TextInput
from transformers.utils.constants import OPENAI_CLIP_MEAN, OPENAI_CLIP_STD
class Qwen2_5_VLVisionConfig(PretrainedConfig):
model_type = "qwen2_5_vl"
base_config_key = "vision_config"
def __init__(
self,
depth=32,
hidden_size=3584,
hidden_act="silu",
intermediate_size=3420,
num_heads=16,
in_channels=3,
patch_size=14,
spatial_merge_size=2,
temporal_patch_size=2,
tokens_per_second=4,
window_size=112,
out_hidden_size=3584,
fullatt_block_indexes=[7, 15, 23, 31],
**kwargs,
):
super().__init__(**kwargs)
self.depth = depth
self.hidden_size = hidden_size
self.hidden_act = hidden_act
self.intermediate_size = intermediate_size
self.num_heads = num_heads
self.in_channels = in_channels
self.patch_size = patch_size
self.spatial_merge_size = spatial_merge_size
self.temporal_patch_size = temporal_patch_size
self.tokens_per_second = tokens_per_second
self.window_size = window_size
self.fullatt_block_indexes = fullatt_block_indexes
self.out_hidden_size = out_hidden_size
class Qwen2_5_VLConfig(PretrainedConfig):
r"""
This is the configuration class to store the configuration of a [`Qwen2_5_VLModel`]. It is used to instantiate a
Qwen2-VL model according to the specified arguments, defining the model architecture. Instantiating a configuration
with the defaults will yield a similar configuration to that of
Qwen2-VL-7B-Instruct [Qwen/Qwen2-VL-7B-Instruct](https://huggingface.co/Qwen/Qwen2-VL-7B-Instruct).
Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
documentation from [`PretrainedConfig`] for more information.
Args:
vocab_size (`int`, *optional*, defaults to 152064):
Vocabulary size of the Qwen2_5_VL model. Defines the number of different tokens that can be represented by the
`inputs_ids` passed when calling [`Qwen2_5_VLModel`]
hidden_size (`int`, *optional*, defaults to 8192):
Dimension of the hidden representations.
intermediate_size (`int`, *optional*, defaults to 29568):
Dimension of the MLP representations.
num_hidden_layers (`int`, *optional*, defaults to 80):
Number of hidden layers in the Transformer encoder.
num_attention_heads (`int`, *optional*, defaults to 64):
Number of attention heads for each attention layer in the Transformer encoder.
num_key_value_heads (`int`, *optional*, defaults to 8):
This is the number of key_value heads that should be used to implement Grouped Query Attention. If
`num_key_value_heads=num_attention_heads`, the model will use Multi Head Attention (MHA), if
`num_key_value_heads=1` the model will use Multi Query Attention (MQA) otherwise GQA is used. When
converting a multi-head checkpoint to a GQA checkpoint, each group key and value head should be constructed
by meanpooling all the original heads within that group. For more details checkout [this
paper](https://arxiv.org/pdf/2305.13245.pdf). If it is not specified, will default to `32`.
hidden_act (`str` or `function`, *optional*, defaults to `"silu"`):
The non-linear activation function (function or string) in the decoder.
max_position_embeddings (`int`, *optional*, defaults to 32768):
The maximum sequence length that this model might ever be used with.
initializer_range (`float`, *optional*, defaults to 0.02):
The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
rms_norm_eps (`float`, *optional*, defaults to 1e-05):
The epsilon used by the rms normalization layers.
use_cache (`bool`, *optional*, defaults to `True`):
Whether or not the model should return the last key/values attentions (not used by all models). Only
relevant if `config.is_decoder=True`.
tie_word_embeddings (`bool`, *optional*, defaults to `False`):
Whether the model's input and output word embeddings should be tied.
rope_theta (`float`, *optional*, defaults to 1000000.0):
The base period of the RoPE embeddings.
use_sliding_window (`bool`, *optional*, defaults to `False`):
Whether to use sliding window attention.
sliding_window (`int`, *optional*, defaults to 4096):
Sliding window attention (SWA) window size. If not specified, will default to `4096`.
max_window_layers (`int`, *optional*, defaults to 80):
The number of layers that use SWA (Sliding Window Attention). The bottom layers use SWA while the top use full attention.
attention_dropout (`float`, *optional*, defaults to 0.0):
The dropout ratio for the attention probabilities.
vision_config (`Dict`, *optional*):
The config for the visual encoder initialization.
rope_scaling (`Dict`, *optional*):
Dictionary containing the scaling configuration for the RoPE embeddings. NOTE: if you apply new rope type
and you expect the model to work on longer `max_position_embeddings`, we recommend you to update this value
accordingly.
Expected contents:
`rope_type` (`str`):
The sub-variant of RoPE to use. Can be one of ['default', 'linear', 'dynamic', 'yarn', 'longrope',
'llama3'], with 'default' being the original RoPE implementation.
`factor` (`float`, *optional*):
Used with all rope types except 'default'. The scaling factor to apply to the RoPE embeddings. In
most scaling types, a `factor` of x will enable the model to handle sequences of length x *
original maximum pre-trained length.
`original_max_position_embeddings` (`int`, *optional*):
Used with 'dynamic', 'longrope' and 'llama3'. The original max position embeddings used during
pretraining.
`attention_factor` (`float`, *optional*):
Used with 'yarn' and 'longrope'. The scaling factor to be applied on the attention
computation. If unspecified, it defaults to value recommended by the implementation, using the
`factor` field to infer the suggested value.
`beta_fast` (`float`, *optional*):
Only used with 'yarn'. Parameter to set the boundary for extrapolation (only) in the linear
ramp function. If unspecified, it defaults to 32.
`beta_slow` (`float`, *optional*):
Only used with 'yarn'. Parameter to set the boundary for interpolation (only) in the linear
ramp function. If unspecified, it defaults to 1.
`short_factor` (`List[float]`, *optional*):
Only used with 'longrope'. The scaling factor to be applied to short contexts (<
`original_max_position_embeddings`). Must be a list of numbers with the same length as the hidden
size divided by the number of attention heads divided by 2
`long_factor` (`List[float]`, *optional*):
Only used with 'longrope'. The scaling factor to be applied to long contexts (<
`original_max_position_embeddings`). Must be a list of numbers with the same length as the hidden
size divided by the number of attention heads divided by 2
`low_freq_factor` (`float`, *optional*):
Only used with 'llama3'. Scaling factor applied to low frequency components of the RoPE
`high_freq_factor` (`float`, *optional*):
Only used with 'llama3'. Scaling factor applied to high frequency components of the RoPE
```python
>>> from transformers import Qwen2_5_VLForConditionalGeneration, Qwen2_5_VLConfig
>>> # Initializing a Qwen2_5_VL style configuration
>>> configuration = Qwen2_5_VLConfig()
>>> # Initializing a model from the Qwen2-VL-7B style configuration
>>> model = Qwen2_5_VLForConditionalGeneration(configuration)
>>> # Accessing the model configuration
>>> configuration = model.config
```"""
model_type = "qwen2_5_vl"
sub_configs = {"vision_config": Qwen2_5_VLVisionConfig}
keys_to_ignore_at_inference = ["past_key_values"]
# Default tensor parallel plan for base model `Qwen2_5_VL`
base_model_tp_plan = {
"layers.*.self_attn.q_proj": "colwise",
"layers.*.self_attn.k_proj": "colwise",
"layers.*.self_attn.v_proj": "colwise",
"layers.*.self_attn.o_proj": "rowwise",
"layers.*.mlp.gate_proj": "colwise",
"layers.*.mlp.up_proj": "colwise",
"layers.*.mlp.down_proj": "rowwise",
}
def __init__(
self,
vocab_size=152064,
hidden_size=8192,
intermediate_size=29568,
num_hidden_layers=80,
num_attention_heads=64,
num_key_value_heads=8,
hidden_act="silu",
max_position_embeddings=32768,
initializer_range=0.02,
rms_norm_eps=1e-05,
use_cache=True,
tie_word_embeddings=False,
rope_theta=1000000.0,
use_sliding_window=False,
sliding_window=4096,
max_window_layers=80,
attention_dropout=0.0,
vision_config=None,
rope_scaling=None,
**kwargs,
):
if isinstance(vision_config, dict):
self.vision_config = self.sub_configs["vision_config"](**vision_config)
elif vision_config is None:
self.vision_config = self.sub_configs["vision_config"]()
self.vocab_size = vocab_size
self.max_position_embeddings = max_position_embeddings
self.hidden_size = hidden_size
self.intermediate_size = intermediate_size
self.num_hidden_layers = num_hidden_layers
self.num_attention_heads = num_attention_heads
self.use_sliding_window = use_sliding_window
self.sliding_window = sliding_window
self.max_window_layers = max_window_layers
# for backward compatibility
if num_key_value_heads is None:
num_key_value_heads = num_attention_heads
self.num_key_value_heads = num_key_value_heads
self.hidden_act = hidden_act
self.initializer_range = initializer_range
self.rms_norm_eps = rms_norm_eps
self.use_cache = use_cache
self.rope_theta = rope_theta
self.attention_dropout = attention_dropout
self.rope_scaling = rope_scaling
# Validate the correctness of rotary position embeddings parameters
# BC: if there is a 'type' field, move it to 'rope_type'.
# and change type from 'mrope' to 'default' because `mrope` does defeault RoPE calculations
# one can set it to "linear"/"dynamic" etc. to have scaled RoPE
# TODO: @raushan update config in the hub
if self.rope_scaling is not None and "type" in self.rope_scaling:
if self.rope_scaling["type"] == "mrope":
self.rope_scaling["type"] = "default"
self.rope_scaling["rope_type"] = self.rope_scaling["type"]
rope_config_validation(self, ignore_keys={"mrope_section"})
super().__init__(tie_word_embeddings=tie_word_embeddings, **kwargs)
# FIXME: workaround of obsolete transformers version
class Qwen2_5_VLVideosProcessorKwargs(VideosKwargs, total=False):
fps: Union[List[float], float]
class Qwen2_5_VLProcessorKwargs(ProcessingKwargs, total=False):
videos_kwargs: Qwen2_5_VLVideosProcessorKwargs
_defaults = {
"text_kwargs": {
"padding": False,
},
"videos_kwargs": {"fps": 2.0},
}
class Qwen2_5_VLProcessor(ProcessorMixin):
r"""
Constructs a Qwen2.5-VL processor which wraps a Qwen2.5-VL image processor and a Qwen2 tokenizer into a single processor.
[`Qwen2_5_VLProcessor`] offers all the functionalities of [`Qwen2VLImageProcessor`] and [`Qwen2TokenizerFast`]. See the
[`~Qwen2_5_VLProcessor.__call__`] and [`~Qwen2_5_VLProcessor.decode`] for more information.
Args:
image_processor ([`Qwen2VLImageProcessor`], *optional*):
The image processor is a required input.
tokenizer ([`Qwen2TokenizerFast`], *optional*):
The tokenizer is a required input.
chat_template (`str`, *optional*): A Jinja template which will be used to convert lists of messages
in a chat into a tokenizable string.
"""
attributes = ["image_processor", "tokenizer"]
valid_kwargs = ["chat_template"]
image_processor_class = "AutoImageProcessor"
tokenizer_class = ("Qwen2Tokenizer", "Qwen2TokenizerFast")
def __init__(
self, image_processor=None, tokenizer=None, chat_template=None, **kwargs
):
self.image_token = (
"<|image_pad|>"
if not hasattr(tokenizer, "image_token")
else tokenizer.image_token
)
self.video_token = (
"<|video_pad|>"
if not hasattr(tokenizer, "video_token")
else tokenizer.video_token
)
super().__init__(image_processor, tokenizer, chat_template=chat_template)
def __call__(
self,
images: ImageInput = None,
text: Union[
TextInput, PreTokenizedInput, List[TextInput], List[PreTokenizedInput]
] = None,
videos: VideoInput = None,
**kwargs: Unpack[Qwen2_5_VLProcessorKwargs],
) -> BatchFeature:
"""
Main method to prepare for the model one or several sequences(s) and image(s). This method forwards the `text`
and `kwargs` arguments to Qwen2TokenizerFast's [`~Qwen2TokenizerFast.__call__`] if `text` is not `None` to encode
the text. To prepare the vision inputs, this method forwards the `vision_infos` and `kwrags` arguments to
Qwen2VLImageProcessor's [`~Qwen2VLImageProcessor.__call__`] if `vision_infos` is not `None`.
Args:
images (`PIL.Image.Image`, `np.ndarray`, `torch.Tensor`, `List[PIL.Image.Image]`, `List[np.ndarray]`, `List[torch.Tensor]`):
The image or batch of images to be prepared. Each image can be a PIL image, NumPy array or PyTorch
tensor. Both channels-first and channels-last formats are supported.
text (`str`, `List[str]`, `List[List[str]]`):
The sequence or batch of sequences to be encoded. Each sequence can be a string or a list of strings
(pretokenized string). If the sequences are provided as list of strings (pretokenized), you must set
`is_split_into_words=True` (to lift the ambiguity with a batch of sequences).
videos (`np.ndarray`, `torch.Tensor`, `List[np.ndarray]`, `List[torch.Tensor]`):
The image or batch of videos to be prepared. Each video can be a 4D NumPy array or PyTorch
tensor, or a nested list of 3D frames. Both channels-first and channels-last formats are supported.
return_tensors (`str` or [`~utils.TensorType`], *optional*):
If set, will return tensors of a particular framework. Acceptable values are:
- `'tf'`: Return TensorFlow `tf.constant` objects.
- `'pt'`: Return PyTorch `torch.Tensor` objects.
- `'np'`: Return NumPy `np.ndarray` objects.
- `'jax'`: Return JAX `jnp.ndarray` objects.
Returns:
[`BatchFeature`]: A [`BatchFeature`] with the following fields:
- **input_ids** -- List of token ids to be fed to a model. Returned when `text` is not `None`.
- **attention_mask** -- List of indices specifying which tokens should be attended to by the model (when
`return_attention_mask=True` or if *"attention_mask"* is in `self.model_input_names` and if `text` is not
`None`).
- **pixel_values** -- Pixel values to be fed to a model. Returned when `images` is not `None`.
- **pixel_values_videos** -- Pixel values of videos to be fed to a model. Returned when `videos` is not `None`.
- **image_grid_thw** -- List of image 3D grid in LLM. Returned when `images` is not `None`.
- **video_grid_thw** -- List of video 3D grid in LLM. Returned when `videos` is not `None`.
- **second_per_grid_ts** -- List of video seconds per time grid. Returned when `videos` is not `None`.
"""
output_kwargs = self._merge_kwargs(
Qwen2_5_VLProcessorKwargs,
tokenizer_init_kwargs=self.tokenizer.init_kwargs,
**kwargs,
)
if images is not None:
image_inputs = self.image_processor(
images=images, videos=None, **output_kwargs["images_kwargs"]
)
image_grid_thw = image_inputs["image_grid_thw"]
else:
image_inputs = {}
image_grid_thw = None
if videos is not None:
videos_inputs = self.image_processor(
images=None, videos=videos, **output_kwargs["images_kwargs"]
)
video_grid_thw = videos_inputs["video_grid_thw"]
fps = output_kwargs["videos_kwargs"].pop("fps", 2.0)
if isinstance(fps, (int, float)):
second_per_grid_ts = [
self.image_processor.temporal_patch_size / fps
] * len(video_grid_thw)
elif hasattr(fps, "__len__") and len(fps) == len(video_grid_thw):
second_per_grid_ts = [
self.image_processor.temporal_patch_size / tmp for tmp in fps
]
else:
raise ValueError(
f"The length of fps ({len(fps) if hasattr(fps, '__len__') else fps}) must be equal to the length of video_grid_thw ({len(video_grid_thw)}) or fps should be a single number."
)
videos_inputs.update({"second_per_grid_ts": second_per_grid_ts})
else:
videos_inputs = {}
video_grid_thw = None
if not isinstance(text, list):
text = [text]
if image_grid_thw is not None:
merge_length = self.image_processor.merge_size**2
index = 0
for i in range(len(text)):
while self.image_token in text[i]:
text[i] = text[i].replace(
self.image_token,
"<|placeholder|>"
* (image_grid_thw[index].prod() // merge_length),
1,
)
index += 1
text[i] = text[i].replace("<|placeholder|>", self.image_token)
if video_grid_thw is not None:
merge_length = self.image_processor.merge_size**2
index = 0
for i in range(len(text)):
while self.video_token in text[i]:
text[i] = text[i].replace(
self.video_token,
"<|placeholder|>"
* (video_grid_thw[index].prod() // merge_length),
1,
)
index += 1
text[i] = text[i].replace("<|placeholder|>", self.video_token)
text_inputs = self.tokenizer(text, **output_kwargs["text_kwargs"])
return BatchFeature(data={**text_inputs, **image_inputs, **videos_inputs})
def batch_decode(self, *args, **kwargs):
"""
This method forwards all its arguments to Qwen2TokenizerFast's [`~PreTrainedTokenizer.batch_decode`]. Please
refer to the docstring of this method for more information.
"""
return self.tokenizer.batch_decode(*args, **kwargs)
def decode(self, *args, **kwargs):
"""
This method forwards all its arguments to Qwen2TokenizerFast's [`~PreTrainedTokenizer.decode`]. Please refer to
the docstring of this method for more information.
"""
return self.tokenizer.decode(*args, **kwargs)
def post_process_image_text_to_text(self, generated_outputs):
"""
Post-process the output of the model to decode the text.
Args:
generated_outputs (`torch.Tensor` or `np.ndarray`):
The output of the model `generate` function. The output is expected to be a tensor of shape `(batch_size, sequence_length)`
or `(sequence_length,)`.
Returns:
`List[str]`: The decoded text.
"""
return self.tokenizer.batch_decode(
generated_outputs,
skip_special_tokens=True,
clean_up_tokenization_spaces=False,
)
@property
def model_input_names(self):
tokenizer_input_names = self.tokenizer.model_input_names
image_processor_input_names = self.image_processor.model_input_names
names_from_processor = list(
dict.fromkeys(tokenizer_input_names + image_processor_input_names)
)
return names_from_processor + ["second_per_grid_ts"]
class Qwen2_5_VLImageProcessor(BaseImageProcessor):
r"""
Constructs a Qwen2.5-VL image processor that dynamically resizes images based on the original images.
Args:
do_resize (`bool`, *optional*, defaults to `True`):
Whether to resize the image's (height, width) dimensions.
resample (`PILImageResampling`, *optional*, defaults to `Resampling.BICUBIC`):
Resampling filter to use when resizing the image.
do_rescale (`bool`, *optional*, defaults to `True`):
Whether to rescale the image by the specified scale `rescale_factor`.
rescale_factor (`int` or `float`, *optional*, defaults to `1/255`):
Scale factor to use if rescaling the image.
do_normalize (`bool`, *optional*, defaults to `True`):
Whether to normalize the image.
image_mean (`float` or `List[float]`, *optional*, defaults to `[0.48145466, 0.4578275, 0.40821073]`):
Mean to use if normalizing the image. This is a float or list of floats for each channel in the image.
image_std (`float` or `List[float]`, *optional*, defaults to `[0.26862954, 0.26130258, 0.27577711]`):
Standard deviation to use if normalizing the image. This is a float or list of floats for each channel in the image.
do_convert_rgb (`bool`, *optional*, defaults to `True`):
Whether to convert the image to RGB.
min_pixels (`int`, *optional*, defaults to `56 * 56`):
The min pixels of the image to resize the image.
max_pixels (`int`, *optional*, defaults to `28 * 28 * 1280`):
The max pixels of the image to resize the image.
patch_size (`int`, *optional*, defaults to 14):
The spacial patch size of the vision encoder.
temporal_patch_size (`int`, *optional*, defaults to 2):
The temporal patch size of the vision encoder.
merge_size (`int`, *optional*, defaults to 2):
The merge size of the vision encoder to llm encoder.
"""
model_input_names = [
"pixel_values",
"image_grid_thw",
"pixel_values_videos",
"video_grid_thw",
"second_per_grid_ts",
]
def __init__(
self,
do_resize: bool = True,
resample: PILImageResampling = PILImageResampling.BICUBIC,
do_rescale: bool = True,
rescale_factor: Union[int, float] = 1 / 255,
do_normalize: bool = True,
image_mean: Optional[Union[float, List[float]]] = None,
image_std: Optional[Union[float, List[float]]] = None,
do_convert_rgb: bool = True,
min_pixels: int = 56 * 56,
max_pixels: int = 28 * 28 * 1280,
patch_size: int = 14,
temporal_patch_size: int = 2,
merge_size: int = 2,
**kwargs,
) -> None:
super().__init__(**kwargs)
self.do_resize = do_resize
self.resample = resample
self.do_rescale = do_rescale
self.rescale_factor = rescale_factor
self.do_normalize = do_normalize
self.image_mean = image_mean if image_mean is not None else OPENAI_CLIP_MEAN
self.image_std = image_std if image_std is not None else OPENAI_CLIP_STD
self.min_pixels = min_pixels
self.max_pixels = max_pixels
self.patch_size = patch_size
self.temporal_patch_size = temporal_patch_size
self.merge_size = merge_size
self.size = {"min_pixels": min_pixels, "max_pixels": max_pixels}
self.do_convert_rgb = do_convert_rgb
def rescale(
self,
image: np.ndarray,
scale: float,
data_format: Optional[Union[str, ChannelDimension]] = None,
input_data_format: Optional[Union[str, ChannelDimension]] = None,
**kwargs,
) -> np.ndarray:
"""
Rescale an image by a scale factor. image = image * scale.
Args:
image (`np.ndarray`):
Image to rescale.
scale (`float`):
The scaling factor to rescale pixel values by.
data_format (`str` or `ChannelDimension`, *optional*):
The channel dimension format for the output image. If unset, the channel dimension format of the input
image is used. Can be one of:
- `"channels_first"` or `ChannelDimension.FIRST`: image in (num_channels, height, width) format.
- `"channels_last"` or `ChannelDimension.LAST`: image in (height, width, num_channels) format.
input_data_format (`ChannelDimension` or `str`, *optional*):
The channel dimension format for the input image. If unset, the channel dimension format is inferred
from the input image. Can be one of:
- `"channels_first"` or `ChannelDimension.FIRST`: image in (num_channels, height, width) format.
- `"channels_last"` or `ChannelDimension.LAST`: image in (height, width, num_channels) format.
Returns:
`np.ndarray`: The rescaled image.
"""
return rescale(
image,
scale=scale,
data_format=data_format,
input_data_format=input_data_format,
**kwargs,
)
def normalize(
self,
image: np.ndarray,
mean: Union[float, Iterable[float]],
std: Union[float, Iterable[float]],
data_format: Optional[Union[str, ChannelDimension]] = None,
input_data_format: Optional[Union[str, ChannelDimension]] = None,
**kwargs,
) -> np.ndarray:
"""
Normalize an image. image = (image - image_mean) / image_std.
Args:
image (`np.ndarray`):
Image to normalize.
mean (`float` or `Iterable[float]`):
Image mean to use for normalization.
std (`float` or `Iterable[float]`):
Image standard deviation to use for normalization.
data_format (`str` or `ChannelDimension`, *optional*):
The channel dimension format for the output image. If unset, the channel dimension format of the input
image is used. Can be one of:
- `"channels_first"` or `ChannelDimension.FIRST`: image in (num_channels, height, width) format.
- `"channels_last"` or `ChannelDimension.LAST`: image in (height, width, num_channels) format.
input_data_format (`ChannelDimension` or `str`, *optional*):
The channel dimension format for the input image. If unset, the channel dimension format is inferred
from the input image. Can be one of:
- `"channels_first"` or `ChannelDimension.FIRST`: image in (num_channels, height, width) format.
- `"channels_last"` or `ChannelDimension.LAST`: image in (height, width, num_channels) format.
Returns:
`np.ndarray`: The normalized image.
"""
return normalize(
image,
mean=mean,
std=std,
data_format=data_format,
input_data_format=input_data_format,
**kwargs,
)
def _preprocess(
self,
images: Union[ImageInput, VideoInput],
do_resize: bool = None,
resample: PILImageResampling = None,
do_rescale: bool = None,
rescale_factor: float = None,
do_normalize: bool = None,
image_mean: Optional[Union[float, List[float]]] = None,
image_std: Optional[Union[float, List[float]]] = None,
do_convert_rgb: bool = None,
data_format: Optional[ChannelDimension] = ChannelDimension.FIRST,
input_data_format: Optional[Union[str, ChannelDimension]] = None,
):
"""
Preprocess an image or batch of images. Copy of the `preprocess` method from `CLIPImageProcessor`.
Args:
images (`ImageInput`):
Image or batch of images to preprocess. Expects pixel values ranging from 0 to 255. If pixel values range from 0 to 1, set `do_rescale=False`.
vision_info (`List[Dict]`, *optional*):
Optional list of dictionaries containing additional information about vision inputs.
do_resize (`bool`, *optional*, defaults to `self.do_resize`):
Whether to resize the image.
resample (`PILImageResampling`, *optional*, defaults to `self.resample`):
Resampling filter to use if resizing the image. This can be one of the `PILImageResampling` enums.
do_rescale (`bool`, *optional*, defaults to `self.do_rescale`):
Whether to rescale the image.
rescale_factor (`float`, *optional*, defaults to `self.rescale_factor`):
Scale factor to use if rescaling the image.
do_normalize (`bool`, *optional*, defaults to `self.do_normalize`):
Whether to normalize the image.
image_mean (`float` or `List[float]`, *optional*, defaults to `self.image_mean`):
Mean to use if normalizing the image. Can be a float or a list of floats corresponding to the number of channels in the image.
image_std (`float` or `List[float]`, *optional*, defaults to `self.image_std`):
Standard deviation to use if normalizing the image. Can be a float or a list of floats corresponding to the number of channels in the image.
do_convert_rgb (`bool`, *optional*, defaults to `self.do_convert_rgb`):
Whether to convert the image to RGB.
data_format (`ChannelDimension`, *optional*, defaults to `ChannelDimension.FIRST`):
The channel dimension format for the output image. Can be one of:
- `"channels_first"` or `ChannelDimension.FIRST`: image in (num_channels, height, width) format.
- `"channels_last"` or `ChannelDimension.LAST`: image in (height, width, num_channels) format.
- Unset: Use the channel dimension format of the input image.
input_data_format (`ChannelDimension` or `str`, *optional*):
The channel dimension format for the input image. Can be one of:
- `"channels_first"` or `ChannelDimension.FIRST`: image in (num_channels, height, width) format.
- `"channels_last"` or `ChannelDimension.LAST`: image in (height, width, num_channels) format.
- `"none"` or `ChannelDimension.NONE`: image in (height, width) format. - `"none"` or `ChannelDimension.NONE`: image in (height, width) format.
"""
images = make_list_of_images(images)
if do_convert_rgb:
images = [convert_to_rgb(image) for image in images]
# All transformations expect numpy arrays.
images = [to_numpy_array(image) for image in images]
if input_data_format is None:
# We assume that all images have the same channel dimension format.
input_data_format = infer_channel_dimension_format(images[0])
height, width = get_image_size(images[0], channel_dim=input_data_format)
resized_height, resized_width = height, width
processed_images = []
for image in images:
if do_resize:
resized_height, resized_width = smart_resize(
height,
width,
factor=self.patch_size * self.merge_size,
min_pixels=self.min_pixels,
max_pixels=self.max_pixels,
)
image = resize(
image,
size=(resized_height, resized_width),
resample=resample,
input_data_format=input_data_format,
)
if do_rescale:
image = self.rescale(
image, scale=rescale_factor, input_data_format=input_data_format
)
if do_normalize:
image = self.normalize(
image=image,
mean=image_mean,
std=image_std,
input_data_format=input_data_format,
)
image = to_channel_dimension_format(
image, data_format, input_channel_dim=input_data_format
)
processed_images.append(image)
patches = np.array(processed_images)
if data_format == ChannelDimension.LAST:
patches = patches.transpose(0, 3, 1, 2)
if patches.shape[0] % self.temporal_patch_size != 0:
repeats = np.repeat(
patches[-1][np.newaxis], self.temporal_patch_size - 1, axis=0
)
patches = np.concatenate([patches, repeats], axis=0)
channel = patches.shape[1]
grid_t = patches.shape[0] // self.temporal_patch_size
grid_h, grid_w = (
resized_height // self.patch_size,
resized_width // self.patch_size,
)
patches = patches.reshape(
grid_t,
self.temporal_patch_size,
channel,
grid_h // self.merge_size,
self.merge_size,
self.patch_size,
grid_w // self.merge_size,
self.merge_size,
self.patch_size,
)
patches = patches.transpose(0, 3, 6, 4, 7, 2, 1, 5, 8)
flatten_patches = patches.reshape(
grid_t * grid_h * grid_w,
channel * self.temporal_patch_size * self.patch_size * self.patch_size,
)
return flatten_patches, (grid_t, grid_h, grid_w)
def preprocess(
self,
images: ImageInput,
videos: VideoInput = None,
do_resize: bool = None,
size: Dict[str, int] = None,
resample: PILImageResampling = None,
do_rescale: bool = None,
rescale_factor: float = None,
do_normalize: bool = None,
image_mean: Optional[Union[float, List[float]]] = None,
image_std: Optional[Union[float, List[float]]] = None,
do_convert_rgb: bool = None,
return_tensors: Optional[Union[str, TensorType]] = None,
data_format: Optional[ChannelDimension] = ChannelDimension.FIRST,
input_data_format: Optional[Union[str, ChannelDimension]] = None,
):
"""
Args:
images (`ImageInput`):
Image to preprocess. Expects a single or batch of images with pixel values ranging from 0 to 255. If
passing in images with pixel values between 0 and 1, set `do_rescale=False`.
videos (`VideoInput`):
Video to preprocess. Expects a single or batch of videos with pixel values ranging from 0 to 255. If
passing in videos with pixel values between 0 and 1, set `do_rescale=False`.
do_resize (`bool`, *optional*, defaults to `self.do_resize`):
Whether to resize the image.
size (`Dict[str, int]`, *optional*, defaults to `self.size`):
Size of the image after resizing. Shortest edge of the image is resized to size["shortest_edge"], with
the longest edge resized to keep the input aspect ratio.
resample (`int`, *optional*, defaults to `self.resample`):
Resampling filter to use if resizing the image. This can be one of the enum `PILImageResampling`. Only
has an effect if `do_resize` is set to `True`.
do_rescale (`bool`, *optional*, defaults to `self.do_rescale`):
Whether to rescale the image.
rescale_factor (`float`, *optional*, defaults to `self.rescale_factor`):
Rescale factor to rescale the image by if `do_rescale` is set to `True`.
do_normalize (`bool`, *optional*, defaults to `self.do_normalize`):
Whether to normalize the image.
image_mean (`float` or `List[float]`, *optional*, defaults to `self.image_mean`):
Image mean to use for normalization. Only has an effect if `do_normalize` is set to `True`.
image_std (`float` or `List[float]`, *optional*, defaults to `self.image_std`):
Image standard deviation to use for normalization. Only has an effect if `do_normalize` is set to
`True`.
do_convert_rgb (`bool`, *optional*, defaults to `self.do_convert_rgb`):
Whether to convert the image to RGB.
return_tensors (`str` or `TensorType`, *optional*):
The type of tensors to return. Can be one of:
- Unset: Return a list of `np.ndarray`.
- `TensorType.TENSORFLOW` or `'tf'`: Return a batch of type `tf.Tensor`.
- `TensorType.PYTORCH` or `'pt'`: Return a batch of type `torch.Tensor`.
- `TensorType.NUMPY` or `'np'`: Return a batch of type `np.ndarray`.
- `TensorType.JAX` or `'jax'`: Return a batch of type `jax.numpy.ndarray`.
data_format (`ChannelDimension` or `str`, *optional*, defaults to `ChannelDimension.FIRST`):
The channel dimension format for the output image. Can be one of:
- `"channels_first"` or `ChannelDimension.FIRST`: image in (num_channels, height, width) format.
- `"channels_last"` or `ChannelDimension.LAST`: image in (height, width, num_channels) format.
- Unset: Use the channel dimension format of the input image.
input_data_format (`ChannelDimension` or `str`, *optional*):
The channel dimension format for the input image. If unset, the channel dimension format is inferred
from the input image. Can be one of:
- `"channels_first"` or `ChannelDimension.FIRST`: image in (num_channels, height, width) format.
- `"channels_last"` or `ChannelDimension.LAST`: image in (height, width, num_channels) format.
- `"none"` or `ChannelDimension.NONE`: image in (height, width) format.
"""
do_resize = do_resize if do_resize is not None else self.do_resize
size = size if size is not None else self.size
resample = resample if resample is not None else self.resample
do_rescale = do_rescale if do_rescale is not None else self.do_rescale
rescale_factor = (
rescale_factor if rescale_factor is not None else self.rescale_factor
)
do_normalize = do_normalize if do_normalize is not None else self.do_normalize
image_mean = image_mean if image_mean is not None else self.image_mean
image_std = image_std if image_std is not None else self.image_std
do_convert_rgb = (
do_convert_rgb if do_convert_rgb is not None else self.do_convert_rgb
)
def make_flat_list_of_images(
images: Union[List[ImageInput], ImageInput],
) -> ImageInput:
"""
Ensure that the output is a flat list of images. If the input is a single image, it is converted to a list of length 1.
If the input is a nested list of images, it is converted to a flat list of images.
Args:
images (`Union[List[ImageInput], ImageInput]`):
The input image.
Returns:
list: A list of images or a 4d array of images.
"""
# If the input is a nested list of images, we flatten it
if (
isinstance(images, (list, tuple))
and all(isinstance(images_i, (list, tuple)) for images_i in images)
and all(is_valid_list_of_images(images_i) for images_i in images)
):
return [img for img_list in images for img in img_list]
if isinstance(images, (list, tuple)) and is_valid_list_of_images(images):
if is_pil_image(images[0]) or images[0].ndim == 3:
return images
if images[0].ndim == 4:
return [img for img_list in images for img in img_list]
if is_valid_image(images):
if is_pil_image(images) or images.ndim == 3:
return [images]
if images.ndim == 4:
return list(images)
raise ValueError(f"Could not make a flat list of images from {images}")
def make_batched_videos(videos) -> VideoInput:
"""
Ensure that the input is a list of videos.
Args:
videos (`VideoInput`):
Video or videos to turn into a list of videos.
Returns:
list: A list of videos.
"""
if (
isinstance(videos, (list, tuple))
and isinstance(videos[0], (list, tuple))
and is_valid_image(videos[0][0])
):
# case 1: nested batch of videos so we flatten it
if not is_pil_image(videos[0][0]) and videos[0][0].ndim == 4:
videos = [
[video for batch_list in batched_videos for video in batch_list]
for batched_videos in videos
]
# case 2: list of videos represented as list of video frames
return videos
elif isinstance(videos, (list, tuple)) and is_valid_image(videos[0]):
if is_pil_image(videos[0]) or videos[0].ndim == 3:
return [videos]
elif videos[0].ndim == 4:
return [list(video) for video in videos]
elif is_valid_image(videos):
if is_pil_image(videos) or videos.ndim == 3:
return [[videos]]
elif videos.ndim == 4:
return [list(videos)]
raise ValueError(f"Could not make batched video from {videos}")
if images is not None:
images = make_flat_list_of_images(images)
if videos is not None:
videos = make_batched_videos(videos)
if images is not None and not valid_images(images):
raise ValueError(
"Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, "
"torch.Tensor, tf.Tensor or jax.ndarray."
)
validate_preprocess_arguments(
rescale_factor=rescale_factor,
do_normalize=do_normalize,
image_mean=image_mean,
image_std=image_std,
do_resize=do_resize,
size=size,
resample=resample,
)
if images is not None:
pixel_values, vision_grid_thws = [], []
for image in images:
patches, image_grid_thw = self._preprocess(
image,
do_resize=do_resize,
resample=resample,
do_rescale=do_rescale,
rescale_factor=rescale_factor,
do_normalize=do_normalize,
image_mean=image_mean,
image_std=image_std,
data_format=data_format,
do_convert_rgb=do_convert_rgb,
input_data_format=input_data_format,
)
pixel_values.extend(patches)
vision_grid_thws.append(image_grid_thw)
pixel_values = np.array(pixel_values)
vision_grid_thws = np.array(vision_grid_thws)
data = {"pixel_values": pixel_values, "image_grid_thw": vision_grid_thws}
if videos is not None:
pixel_values, vision_grid_thws = [], []
for images in videos:
patches, video_grid_thw = self._preprocess(
images,
do_resize=do_resize,
resample=resample,
do_rescale=do_rescale,
rescale_factor=rescale_factor,
do_normalize=do_normalize,
image_mean=image_mean,
image_std=image_std,
data_format=data_format,
do_convert_rgb=do_convert_rgb,
input_data_format=input_data_format,
)
pixel_values.extend(patches)
vision_grid_thws.append(video_grid_thw)
pixel_values = np.array(pixel_values)
vision_grid_thws = np.array(vision_grid_thws)
data = {
"pixel_values_videos": pixel_values,
"video_grid_thw": vision_grid_thws,
}
return BatchFeature(data=data, tensor_type=return_tensors)
AutoImageProcessor.register(Qwen2_5_VLConfig, Qwen2_5_VLImageProcessor)
AutoProcessor.register(Qwen2_5_VLConfig, Qwen2_5_VLProcessor)
# coding=utf-8
# Copyright 2024 The Qwen team, Alibaba Group and the HuggingFace Inc. team.
# All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Qwen2VL model configuration"""
import os
from typing import Union
from transformers import PretrainedConfig
class Qwen2VLVisionConfig(PretrainedConfig):
model_type = "qwen2_vl"
def __init__(
self,
depth=32,
embed_dim=1280,
hidden_size=3584,
hidden_act="quick_gelu",
mlp_ratio=4,
num_heads=16,
in_channels=3,
patch_size=14,
spatial_merge_size=2,
temporal_patch_size=2,
**kwargs,
):
super().__init__(**kwargs)
self.depth = depth
self.embed_dim = embed_dim
self.hidden_size = hidden_size
self.hidden_act = hidden_act
self.mlp_ratio = mlp_ratio
self.num_heads = num_heads
self.in_channels = in_channels
self.patch_size = patch_size
self.spatial_merge_size = spatial_merge_size
self.temporal_patch_size = temporal_patch_size
@classmethod
def from_pretrained(
cls, pretrained_model_name_or_path: Union[str, os.PathLike], **kwargs
) -> "PretrainedConfig":
cls._set_token_in_kwargs(kwargs)
config_dict, kwargs = cls.get_config_dict(
pretrained_model_name_or_path, **kwargs
)
if config_dict.get("model_type") == "qwen2_vl":
config_dict = config_dict["vision_config"]
return cls.from_dict(config_dict, **kwargs)
class Qwen2VLConfig(PretrainedConfig):
model_type = "qwen2_vl"
def __init__(
self,
vocab_size=152064,
hidden_size=8192,
intermediate_size=29568,
num_hidden_layers=80,
num_attention_heads=64,
num_key_value_heads=8,
hidden_act="silu",
max_position_embeddings=32768,
initializer_range=0.02,
rms_norm_eps=1e-05,
use_cache=True,
tie_word_embeddings=False,
rope_theta=1000000.0,
use_sliding_window=False,
sliding_window=4096,
max_window_layers=80,
attention_dropout=0.0,
vision_config=None,
rope_scaling=None,
**kwargs,
):
if isinstance(vision_config, dict):
self.vision_config = Qwen2VLVisionConfig(**vision_config)
elif vision_config is None:
self.vision_config = Qwen2VLVisionConfig()
self.vocab_size = vocab_size
self.max_position_embeddings = max_position_embeddings
self.hidden_size = hidden_size
self.intermediate_size = intermediate_size
self.num_hidden_layers = num_hidden_layers
self.num_attention_heads = num_attention_heads
self.use_sliding_window = use_sliding_window
self.sliding_window = sliding_window
self.max_window_layers = max_window_layers
# for backward compatibility
if num_key_value_heads is None:
num_key_value_heads = num_attention_heads
self.num_key_value_heads = num_key_value_heads
self.hidden_act = hidden_act
self.initializer_range = initializer_range
self.rms_norm_eps = rms_norm_eps
self.use_cache = use_cache
self.rope_theta = rope_theta
self.attention_dropout = attention_dropout
self.rope_scaling = rope_scaling
# NOTE(HandH1998): This is necessary for configuring the `rope_type`` of qwen2vl models after removing dependencies on vllm.
if self.rope_scaling is not None and "type" in self.rope_scaling:
if self.rope_scaling["type"] == "mrope":
self.rope_scaling["type"] = "default"
self.rope_scaling["rope_type"] = self.rope_scaling["type"]
super().__init__(tie_word_embeddings=tie_word_embeddings, **kwargs)
......@@ -30,16 +30,15 @@ from transformers import (
)
from transformers.models.auto.modeling_auto import MODEL_FOR_CAUSAL_LM_MAPPING_NAMES
from sglang.srt.configs import ChatGLMConfig, DbrxConfig, ExaoneConfig, Qwen2VLConfig
from sglang.srt.configs import ChatGLMConfig, DbrxConfig, ExaoneConfig, Qwen2_5_VLConfig
_CONFIG_REGISTRY: Dict[str, Type[PretrainedConfig]] = {
ChatGLMConfig.model_type: ChatGLMConfig,
DbrxConfig.model_type: DbrxConfig,
ExaoneConfig.model_type: ExaoneConfig,
Qwen2VLConfig.model_type: Qwen2VLConfig,
Qwen2_5_VLConfig.model_type: Qwen2_5_VLConfig,
}
for name, cls in _CONFIG_REGISTRY.items():
with contextlib.suppress(ValueError):
AutoConfig.register(name, cls)
......
# TODO: also move pad_input_ids into this module
import asyncio
import concurrent.futures
import dataclasses
import logging
import multiprocessing as mp
import os
......@@ -8,6 +9,7 @@ from abc import ABC, abstractmethod
from typing import List, Optional, Union
import numpy as np
import PIL
import transformers
from decord import VideoReader, cpu
from PIL import Image
......@@ -34,11 +36,22 @@ def init_global_processor(server_args: ServerArgs):
)
@dataclasses.dataclass
class BaseImageProcessorOutput:
image_hashes: list[int]
image_sizes: list[int]
all_frames: [PIL.Image]
# input_text, with each frame of video/image represented with a image_token
input_text: str
class BaseImageProcessor(ABC):
def __init__(self, hf_config, server_args, _processor):
self.hf_config = hf_config
self._processor = _processor
self.server_args = server_args
# FIXME: not accurate, model and image specific
self.NUM_TOKEN_PER_FRAME = 330
self.executor = concurrent.futures.ProcessPoolExecutor(
initializer=init_global_processor,
......@@ -48,9 +61,128 @@ class BaseImageProcessor(ABC):
)
@abstractmethod
async def process_images_async(self, image_data, input_text, **kwargs):
async def process_images_async(
self, image_data, input_text, max_req_input_len, **kwargs
):
pass
def get_estimated_frames_list(self, image_data):
"""
estimate the total frame count from all visual input
"""
# Before processing inputs
estimated_frames_list = []
for image in image_data:
if isinstance(image, str) and image.startswith("video:"):
path = image[len("video:") :]
# Estimate frames for the video
vr = VideoReader(path, ctx=cpu(0))
num_frames = len(vr)
else:
# For images, each contributes one frame
num_frames = 1
estimated_frames_list.append(num_frames)
return estimated_frames_list
def encode_video(self, video_path, frame_count_limit=None):
if not os.path.exists(video_path):
logger.error(f"Video {video_path} does not exist")
return []
if frame_count_limit == 0:
return []
def uniform_sample(l, n):
gap = len(l) / n
idxs = [int(i * gap + gap / 2) for i in range(n)]
return [l[i] for i in idxs]
vr = VideoReader(video_path, ctx=cpu(0))
sample_fps = round(vr.get_avg_fps() / 1) # FPS
frame_idx = [i for i in range(0, len(vr), sample_fps)]
if frame_count_limit is not None and len(frame_idx) > frame_count_limit:
frame_idx = uniform_sample(frame_idx, frame_count_limit)
frames = vr.get_batch(frame_idx).asnumpy()
frames = [Image.fromarray(v.astype("uint8")) for v in frames]
return frames
def load_images(
self,
max_req_input_len: int,
input_ids: list,
image_data,
image_token: str,
) -> BaseImageProcessorOutput:
"""
Each frame of video/image will be replaced by a single image token
"""
image_hashes, image_sizes = [], []
all_frames = []
new_text_parts = []
if isinstance(input_ids, list):
assert len(input_ids) and isinstance(input_ids[0], int)
input_text = self._processor.tokenizer.decode(input_ids)
else:
input_text = input_ids
text_parts = input_text.split(image_token)
# roughly calculate the max number of frames under the max_req_input_len limit
def calculate_max_num_frames() -> int:
ret = (max_req_input_len - len(input_ids)) // self.NUM_TOKEN_PER_FRAME
return min(ret, 100)
MAX_NUM_FRAMES = calculate_max_num_frames()
estimated_frames_list = self.get_estimated_frames_list(image_data=image_data)
total_frame_count = sum(estimated_frames_list)
# a heuristic value, suggesting the maximum fraction of frames to embed from all visual inputs.
# e.g., 0.1 suggests that 1 frame out of 10 input frames should be used
scaling_factor = min(1.0, MAX_NUM_FRAMES / total_frame_count)
# Process each input with allocated frames
for image_index, (image, estimated_frames) in enumerate(
zip(image_data, estimated_frames_list)
):
if len(all_frames) >= MAX_NUM_FRAMES:
frames_to_process = 0
else:
frames_to_process = max(1, int(estimated_frames * scaling_factor))
if frames_to_process == 0:
frames = []
else:
try:
if isinstance(image, str) and image.startswith("video:"):
path = image[len("video:") :]
frames = self.encode_video(
path, frame_count_limit=frames_to_process
)
else:
raw_image, _size = load_image(image)
frames = [raw_image]
if len(frames) == 0:
continue
except FileNotFoundError as e:
print(e)
return None
image_sizes += frames[0].size * len(frames)
image_hashes += [hash(image)] * len(frames)
all_frames += frames
new_text_parts.append(text_parts[image_index])
if frames_to_process != 0:
new_text_parts.append(image_token * len(frames))
assert frames_to_process == len(frames)
new_text_parts.append(text_parts[-1])
input_text = "".join(new_text_parts)
return BaseImageProcessorOutput(
image_hashes, image_sizes, all_frames, input_text
)
class DummyImageProcessor(BaseImageProcessor):
def __init__(self):
......@@ -248,9 +380,9 @@ class MiniCPMVImageProcessor(BaseImageProcessor):
text=input_text, images=images, return_tensors="pt"
)
return {
"input_ids": result["input_ids"],
"pixel_values": result["pixel_values"],
"tgt_sizes": result["tgt_sizes"],
"input_ids": result.input_ids,
"pixel_values": result.pixel_values,
"tgt_sizes": result.tgt_sizes,
}
async def _process_images(self, images, input_text):
......@@ -278,124 +410,20 @@ class MiniCPMVImageProcessor(BaseImageProcessor):
):
if not image_data:
return None
if not isinstance(image_data, list):
image_data = [image_data]
image_hashes, image_sizes = [], []
all_frames = []
# roughly calculate the max number of frames under the max_req_input_len limit
def calculate_max_num_frames() -> int:
# Model-specific
NUM_TOKEN_PER_FRAME = 330
ret = (max_req_input_len - len(input_ids)) // NUM_TOKEN_PER_FRAME
return min(ret, 100)
MAX_NUM_FRAMES = calculate_max_num_frames()
# print(f"MAX_NUM_FRAMES: {MAX_NUM_FRAMES}")
def get_estimated_frames_list():
"""
estimate the total frame count from all visual input
"""
# Before processing inputs
estimated_frames_list = []
for image in image_data:
if isinstance(image, str) and image.startswith("video:"):
path = image[len("video:") :]
# Estimate frames for the video
vr = VideoReader(path, ctx=cpu(0))
num_frames = len(vr)
else:
# For images, each contributes one frame
num_frames = 1
estimated_frames_list.append(num_frames)
return estimated_frames_list
estimated_frames_list = get_estimated_frames_list()
total_frame_count = sum(estimated_frames_list)
scaling_factor = min(1.0, MAX_NUM_FRAMES / total_frame_count)
def encode_video(video_path, frame_count_limit=None):
if not os.path.exists(video_path):
logger.error(f"Video {video_path} does not exist")
return []
if frame_count_limit == 0:
return []
def uniform_sample(l, n):
gap = len(l) / n
idxs = [int(i * gap + gap / 2) for i in range(n)]
return [l[i] for i in idxs]
vr = VideoReader(video_path, ctx=cpu(0))
sample_fps = round(vr.get_avg_fps() / 1) # FPS
frame_idx = [i for i in range(0, len(vr), sample_fps)]
if frame_count_limit is not None and len(frame_idx) > frame_count_limit:
frame_idx = uniform_sample(frame_idx, frame_count_limit)
frames = vr.get_batch(frame_idx).asnumpy()
frames = [Image.fromarray(v.astype("uint8")) for v in frames]
return frames
if isinstance(input_ids, list):
assert len(input_ids) and isinstance(input_ids[0], int)
input_text = self._processor.tokenizer.decode(input_ids)
else:
input_text = input_ids
# MiniCPMV requires each frame of video as a single image token
text_parts = input_text.split(self.IMAGE_TOKEN)
new_text_parts = []
# Process each input with allocated frames
for image_index, (image, estimated_frames) in enumerate(
zip(image_data, estimated_frames_list)
):
if len(all_frames) >= MAX_NUM_FRAMES:
frames_to_process = 0
else:
frames_to_process = max(1, int(estimated_frames * scaling_factor))
if frames_to_process == 0:
frames = []
else:
try:
if isinstance(image, str) and image.startswith("video:"):
path = image[len("video:") :]
frames = encode_video(path, frame_count_limit=frames_to_process)
else:
raw_image, _size = load_image(image)
frames = [raw_image]
if len(frames) == 0:
continue
except FileNotFoundError as e:
print(e)
return None
image_sizes += frames[0].size * len(frames)
image_hashes += [hash(image)] * len(frames)
all_frames += frames
assert frames_to_process == len(frames)
new_text_parts.append(text_parts[image_index])
if frames_to_process != 0:
new_text_parts.append(self.IMAGE_TOKEN * len(frames))
new_text_parts.append(text_parts[-1])
input_text = "".join(new_text_parts)
base_output = self.load_images(
max_req_input_len, input_ids, image_data, self.IMAGE_TOKEN
)
if base_output is None:
return None
if len(all_frames) == 0:
if len(base_output.all_frames) == 0:
return None
res = await self._process_images(images=all_frames, input_text=input_text)
pixel_values = res["pixel_values"]
tgt_sizes = res["tgt_sizes"]
input_ids = res["input_ids"]
res = await self._process_images(
images=base_output.all_frames, input_text=base_output.input_text
)
# Collect special token ids
tokenizer = self._processor.tokenizer
......@@ -405,10 +433,10 @@ class MiniCPMVImageProcessor(BaseImageProcessor):
slice_start_id = [tokenizer.slice_start_id]
slice_end_id = [tokenizer.slice_end_id]
return {
"input_ids": input_ids.flatten().tolist(),
"pixel_values": pixel_values,
"tgt_sizes": tgt_sizes,
"image_hashes": image_hashes,
"input_ids": res["input_ids"].flatten().tolist(),
"pixel_values": res["pixel_values"],
"tgt_sizes": res["tgt_sizes"],
"image_hashes": base_output.image_hashes,
"modalities": request_obj.modalities or ["image"],
"im_start_id": im_start_id,
"im_end_id": im_end_id,
......@@ -536,13 +564,80 @@ class Qwen2VLImageProcessor(BaseImageProcessor):
}
class Qwen2_5VLImageProcessor(BaseImageProcessor):
def __init__(self, hf_config, server_args, _processor):
super().__init__(hf_config, server_args, _processor)
self.IMAGE_TOKEN = "<|vision_start|><|image_pad|><|vision_end|>"
self.IM_START_TOKEN_ID = hf_config.vision_start_token_id
self.IM_END_TOKEN_ID = hf_config.vision_end_token_id
self.NUM_TOKEN_PER_FRAME = 770
@staticmethod
def _process_images_task(images, input_text):
result = global_processor.__call__(
text=input_text, images=images, return_tensors="pt"
)
return {
"input_ids": result.input_ids,
"pixel_values": result.pixel_values,
"image_grid_thws": result.image_grid_thw,
}
async def _process_images(self, images, input_text) -> dict:
if self.executor is not None:
loop = asyncio.get_event_loop()
return await loop.run_in_executor(
self.executor,
Qwen2_5VLImageProcessor._process_images_task,
images,
input_text,
)
else:
return self._process_images_task(images, input_text)
async def process_images_async(
self,
image_data: List[Union[str, bytes]],
input_ids,
request_obj,
max_req_input_len,
*args,
**kwargs,
):
if not image_data:
return None
if isinstance(image_data, str):
image_data = [image_data]
image_token = self.IMAGE_TOKEN
base_output = self.load_images(
max_req_input_len, input_ids, image_data, image_token
)
ret = await self._process_images(base_output.all_frames, base_output.input_text)
return {
"input_ids": ret["input_ids"].flatten().tolist(),
"pixel_values": ret["pixel_values"],
"image_hashes": base_output.image_hashes,
"modalities": request_obj.modalities or ["image"],
"image_grid_thws": ret["image_grid_thws"],
"im_start_id": self.IM_START_TOKEN_ID,
"im_end_id": self.IM_END_TOKEN_ID,
}
def get_image_processor(
hf_config, server_args: ServerArgs, processor
) -> BaseImageProcessor:
if "MllamaForConditionalGeneration" in hf_config.architectures:
return MllamaImageProcessor(hf_config, server_args, processor)
elif "Qwen2VLForConditionalGeneration" in hf_config.architectures:
return Qwen2VLImageProcessor(hf_config, server_args, processor.image_processor)
return Qwen2VLImageProcessor(hf_config, server_args, processor)
elif "Qwen2_5_VLForConditionalGeneration" in hf_config.architectures:
return Qwen2_5VLImageProcessor(hf_config, server_args, processor)
elif "MiniCPMV" in hf_config.architectures:
return MiniCPMVImageProcessor(hf_config, server_args, processor)
else:
......
# coding=utf-8
# Adapted from
# https://github.com/huggingface/transformers/blob/19e6e80e10118f855137b90740936c0b11ac397f/src/transformers/models/qwen2_vl/modeling_qwen2_vl.py
# Copyright 2024 The Qwen team.
# Copyright 2023 The vLLM team.
# Copyright 2022 EleutherAI and the HuggingFace Inc. team. All rights reserved.
#
# This code is based on EleutherAI's GPT-NeoX library and the GPT-NeoX
# and OPT implementations in this library. It has been modified from its
# original forms to accommodate minor architectural differences compared
# to GPT-NeoX and OPT used by the Meta AI team that trained the model.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Inference-only Qwen2-VL model compatible with HuggingFace weights."""
import logging
from functools import lru_cache, partial
from typing import Iterable, List, Optional, Tuple, Type
import numpy as np
import torch
import torch.nn as nn
import torch.nn.functional as F
from einops import rearrange
from transformers import AutoModel, Qwen2VLConfig
from transformers.activations import ACT2FN
from transformers.models.qwen2.modeling_qwen2 import Qwen2RMSNorm
from sglang.srt.configs import Qwen2_5_VLConfig, Qwen2_5_VLVisionConfig
from sglang.srt.distributed import (
get_tensor_model_parallel_rank,
get_tensor_model_parallel_world_size,
)
from sglang.srt.hf_transformers_utils import get_processor
from sglang.srt.layers.attention.vision import VisionAttention
from sglang.srt.layers.linear import ColumnParallelLinear, RowParallelLinear
from sglang.srt.layers.logits_processor import LogitsProcessor
from sglang.srt.layers.pooler import Pooler, PoolingType
from sglang.srt.layers.quantization.base_config import QuantizationConfig
from sglang.srt.layers.vocab_parallel_embedding import ParallelLMHead
from sglang.srt.managers.schedule_batch import ImageInputs
from sglang.srt.model_executor.forward_batch_info import ForwardBatch
from sglang.srt.model_loader.weight_utils import default_weight_loader
from sglang.srt.models.qwen2 import Qwen2Model
from sglang.srt.models.qwen2_vl import Qwen2VLImageInputs, Qwen2VLVideoInputs
logger = logging.getLogger(__name__)
class Qwen2_5_VLMLP(nn.Module):
def __init__(
self,
in_features: int,
hidden_features: int = None,
bias: bool = True,
hidden_act="silu",
quant_config: Optional[QuantizationConfig] = None,
):
super().__init__()
self.gate_proj = ColumnParallelLinear(
in_features, hidden_features, bias=bias, quant_config=quant_config
)
self.up_proj = ColumnParallelLinear(
in_features, hidden_features, bias=bias, quant_config=quant_config
)
self.down_proj = RowParallelLinear(
hidden_features, in_features, bias=bias, quant_config=quant_config
)
self.act = ACT2FN[hidden_act]
def forward(self, x: torch.Tensor) -> torch.Tensor:
x_parallel_gate, _ = self.gate_proj(x)
x_parallel_gate = self.act(x_parallel_gate)
x_parallel_up, _ = self.up_proj(x)
x_parallel = x_parallel_gate * x_parallel_up
x, _ = self.down_proj(x_parallel)
return x
class Qwen2_5_VisionBlock(nn.Module):
def __init__(
self,
dim: int,
intermediate_dim: int,
num_heads: int,
hidden_act="silu",
norm_layer: Type[nn.Module] = None,
attn_implementation: Optional[str] = "sdpa",
quant_config: Optional[QuantizationConfig] = None,
) -> None:
super().__init__()
if norm_layer is None:
norm_layer = partial(nn.LayerNorm, eps=1e-6)
self.norm1 = Qwen2RMSNorm(dim, eps=1e-6)
self.norm2 = Qwen2RMSNorm(dim, eps=1e-6)
if attn_implementation == "sdpa":
use_context_forward = False
use_full_precision_softmax = False
elif attn_implementation == "flash_attention_2":
use_full_precision_softmax = False
use_context_forward = True
elif attn_implementation == "eager":
use_full_precision_softmax = True
use_context_forward = False
self.attn = VisionAttention(
embed_dim=dim,
num_heads=num_heads,
projection_size=dim,
use_qkv_parallel=False,
use_context_forward=use_context_forward,
use_full_precision_softmax=use_full_precision_softmax,
flatten_batch=True,
quant_config=quant_config,
)
self.mlp = Qwen2_5_VLMLP(
dim, intermediate_dim, hidden_act=hidden_act, quant_config=quant_config
)
def forward(
self, x: torch.Tensor, cu_seqlens: torch.Tensor, rotary_pos_emb: torch.Tensor
) -> torch.Tensor:
hidden_states = self.norm1(x)
hidden_states = rearrange(hidden_states, "s b ... -> b s ...")
attn = self.attn(
hidden_states, cu_seqlens=cu_seqlens, rotary_pos_emb=rotary_pos_emb
)
attn = rearrange(attn, "b s ... -> s b ...")
x = x + attn
norm2 = self.norm2(x)
mlp = self.mlp(norm2)
x = x + mlp
return x
class Qwen2_5_VisionPatchEmbed(nn.Module):
def __init__(
self,
patch_size: int = 14,
temporal_patch_size: int = 2,
in_chans: int = 3,
embed_dim: int = 1152,
) -> None:
super().__init__()
self.patch_size = patch_size
self.temporal_patch_size = temporal_patch_size
self.embed_dim = embed_dim
kernel_size = [temporal_patch_size, patch_size, patch_size]
self.proj = nn.Conv3d(
in_chans, embed_dim, kernel_size=kernel_size, stride=kernel_size, bias=False
)
def forward(self, x: torch.Tensor) -> torch.Tensor:
L, C = x.shape
x = x.view(L, -1, self.temporal_patch_size, self.patch_size, self.patch_size)
x = self.proj(x).view(L, self.embed_dim)
return x
class Qwen2_5_VisionPatchMerger(nn.Module):
def __init__(
self,
dim: int,
context_dim: int,
spatial_merge_size: int = 2,
quant_config: Optional[QuantizationConfig] = None,
) -> None:
super().__init__()
self.hidden_size = context_dim * (spatial_merge_size**2)
self.ln_q = Qwen2RMSNorm(context_dim, eps=1e-6)
self.mlp = nn.ModuleList(
[
ColumnParallelLinear(
self.hidden_size,
self.hidden_size,
bias=True,
quant_config=quant_config,
),
nn.GELU(),
RowParallelLinear(
self.hidden_size, dim, bias=True, quant_config=quant_config
),
]
)
def forward(self, x: torch.Tensor) -> torch.Tensor:
x = self.ln_q(x)
x = x.view(-1, self.hidden_size)
mlp_fc1, mlp_act, mlp_fc2 = self.mlp
x_parallel, _ = mlp_fc1(x)
x_parallel = mlp_act(x_parallel)
out, _ = mlp_fc2(x_parallel)
return out
class Qwen2_5_VisionRotaryEmbedding(nn.Module):
def __init__(self, dim: int, theta: float = 10000.0) -> None:
super().__init__()
self.dim = dim
self.theta = theta
inv_freq = 1.0 / (theta ** (torch.arange(0, dim, 2, dtype=torch.float) / dim))
self.register_buffer("inv_freq", inv_freq, persistent=False)
self._seq_len_cached = 0
self._freqs_cached = None
def update_freqs_cache(self, seqlen: int) -> None:
if seqlen > self._seq_len_cached:
seqlen *= 2
self._seq_len_cached = seqlen
self.inv_freq = 1.0 / (
self.theta
** (
torch.arange(
0, self.dim, 2, dtype=torch.float, device=self.inv_freq.device
)
/ self.dim
)
)
seq = torch.arange(
seqlen, device=self.inv_freq.device, dtype=self.inv_freq.dtype
)
freqs = torch.outer(seq, self.inv_freq)
self._freqs_cached = freqs
def forward(self, seqlen: int) -> torch.Tensor:
self.update_freqs_cache(seqlen)
return self._freqs_cached[:seqlen]
class Qwen2_5_VisionTransformer(nn.Module):
def __init__(
self,
vision_config: Qwen2_5_VLVisionConfig,
norm_eps: float = 1e-6,
quant_config: Optional[QuantizationConfig] = None,
) -> None:
super().__init__()
patch_size: int = vision_config.patch_size
temporal_patch_size: int = vision_config.temporal_patch_size
spatial_merge_size: int = vision_config.spatial_merge_size
self.spatial_merge_size = spatial_merge_size
self.spatial_merge_unit: int = spatial_merge_size * spatial_merge_size
in_chans: int = vision_config.in_chans
hidden_size: int = vision_config.hidden_size
depth: int = vision_config.depth
num_heads: int = vision_config.num_heads
self.fullatt_block_indexes = vision_config.fullatt_block_indexes
self.window_size = vision_config.window_size
self.patch_size = vision_config.patch_size
mlp_hidden_size: int = vision_config.intermediate_size
self.patch_embed = Qwen2_5_VisionPatchEmbed(
patch_size=patch_size,
temporal_patch_size=temporal_patch_size,
in_chans=in_chans,
embed_dim=hidden_size,
)
norm_layer = partial(nn.LayerNorm, eps=norm_eps)
head_dim = hidden_size // num_heads
self.rotary_pos_emb = Qwen2_5_VisionRotaryEmbedding(head_dim // 2)
self.blocks = nn.ModuleList(
[
Qwen2_5_VisionBlock(
dim=hidden_size,
intermediate_dim=mlp_hidden_size,
num_heads=num_heads,
hidden_act=vision_config.hidden_act,
norm_layer=norm_layer,
attn_implementation="sdpa",
quant_config=quant_config,
)
for _ in range(depth)
]
)
self.merger = Qwen2_5_VisionPatchMerger(
dim=vision_config.out_hidden_size,
context_dim=hidden_size,
spatial_merge_size=spatial_merge_size,
quant_config=quant_config,
)
def get_window_index(self, grid_thw):
window_index: list = []
cu_window_seqlens: list = [0]
window_index_id = 0
vit_merger_window_size = (
self.window_size // self.spatial_merge_size // self.patch_size
)
for grid_t, grid_h, grid_w in grid_thw:
llm_grid_h, llm_grid_w = (
grid_h // self.spatial_merge_size,
grid_w // self.spatial_merge_size,
)
index = torch.arange(grid_t * llm_grid_h * llm_grid_w).reshape(
grid_t, llm_grid_h, llm_grid_w
)
pad_h = vit_merger_window_size - llm_grid_h % vit_merger_window_size
pad_w = vit_merger_window_size - llm_grid_w % vit_merger_window_size
num_windows_h = (llm_grid_h + pad_h) // vit_merger_window_size
num_windows_w = (llm_grid_w + pad_w) // vit_merger_window_size
index_padded = F.pad(index, (0, pad_w, 0, pad_h), "constant", -100)
index_padded = index_padded.reshape(
grid_t,
num_windows_h,
vit_merger_window_size,
num_windows_w,
vit_merger_window_size,
)
index_padded = index_padded.permute(0, 1, 3, 2, 4).reshape(
grid_t,
num_windows_h * num_windows_w,
vit_merger_window_size,
vit_merger_window_size,
)
seqlens = (index_padded != -100).sum([2, 3]).reshape(-1)
index_padded = index_padded.reshape(-1)
index_new = index_padded[index_padded != -100]
window_index.append(index_new + window_index_id)
cu_seqlens_tmp = (
seqlens.cumsum(0) * self.spatial_merge_unit + cu_window_seqlens[-1]
)
cu_window_seqlens.extend(cu_seqlens_tmp.tolist())
window_index_id += (grid_t * llm_grid_h * llm_grid_w).item()
window_index = torch.cat(window_index, dim=0)
return window_index, cu_window_seqlens
@property
def dtype(self) -> torch.dtype:
return self.blocks[0].mlp.gate_proj.weight.dtype
@property
def device(self) -> torch.device:
return self.blocks[0].mlp.gate_proj.weight.device
def rot_pos_emb(self, grid_thw: torch.Tensor) -> torch.Tensor:
pos_ids = []
for t, h, w in grid_thw:
hpos_ids = torch.arange(h).unsqueeze(1).expand(-1, w)
wpos_ids = torch.arange(w).unsqueeze(0).expand(h, -1)
hpos_ids = (
hpos_ids.reshape(
h // self.spatial_merge_size,
self.spatial_merge_size,
w // self.spatial_merge_size,
self.spatial_merge_size,
)
.permute(0, 2, 1, 3)
.flatten()
)
wpos_ids = (
wpos_ids.reshape(
h // self.spatial_merge_size,
self.spatial_merge_size,
w // self.spatial_merge_size,
self.spatial_merge_size,
)
.permute(0, 2, 1, 3)
.flatten()
)
pos_ids.append(torch.stack([hpos_ids, wpos_ids], dim=-1).repeat(t, 1))
pos_ids = torch.cat(pos_ids, dim=0)
max_grid_size = grid_thw[:, 1:].max()
rotary_pos_emb_full = self.rotary_pos_emb(max_grid_size)
rotary_pos_emb = rotary_pos_emb_full[pos_ids].flatten(1)
return rotary_pos_emb
def forward(
self,
x: torch.Tensor,
grid_thw: torch.Tensor,
) -> torch.Tensor:
# patchify
x = x.to(device=self.device, dtype=self.dtype)
x = self.patch_embed(x)
# compute position embedding
rotary_pos_emb = self.rot_pos_emb(grid_thw)
window_index, cu_window_seqlens = self.get_window_index(grid_thw)
cu_window_seqlens = torch.tensor(
cu_window_seqlens,
device=x.device,
dtype=grid_thw.dtype if torch.jit.is_tracing() else torch.int32,
)
cu_window_seqlens = torch.unique_consecutive(cu_window_seqlens)
seq_len, _ = x.size()
x = x.reshape(seq_len // self.spatial_merge_unit, self.spatial_merge_unit, -1)
x = x[window_index, :, :]
x = x.reshape(seq_len, -1)
rotary_pos_emb = rotary_pos_emb.reshape(
seq_len // self.spatial_merge_unit, self.spatial_merge_unit, -1
)
rotary_pos_emb = rotary_pos_emb[window_index, :, :]
rotary_pos_emb = rotary_pos_emb.reshape(seq_len, -1)
# compute cu_seqlens
cu_seqlens = torch.repeat_interleave(
grid_thw[:, 1] * grid_thw[:, 2], grid_thw[:, 0]
).cumsum(dim=0, dtype=torch.int32)
cu_seqlens = F.pad(cu_seqlens, (1, 0), "constant", 0)
# transformers
x = x.unsqueeze(1)
for layer_num, blk in enumerate(self.blocks):
if layer_num in self.fullatt_block_indexes:
cu_seqlens_now = cu_seqlens
else:
cu_seqlens_now = cu_window_seqlens
x = blk(x, cu_seqlens=cu_seqlens_now, rotary_pos_emb=rotary_pos_emb)
# adapter
x = self.merger(x)
reverse_indices = torch.argsort(window_index)
x = x[reverse_indices, :]
return x
cached_get_processor = lru_cache(get_processor)
class Qwen2_5_VLForConditionalGeneration(nn.Module):
def __init__(
self,
config: Qwen2VLConfig,
quant_config: Optional[QuantizationConfig] = None,
) -> None:
super().__init__()
self.config = config
self.visual = Qwen2_5_VisionTransformer(
config.vision_config,
norm_eps=getattr(config, "rms_norm_eps", 1e-6),
# NOTE: Qwen2-VL vision encoder does not support any
# quantization method now.
quant_config=None,
)
self.model = Qwen2Model(config, quant_config)
if config.tie_word_embeddings:
self.lm_head = self.model.embed_tokens
else:
self.lm_head = ParallelLMHead(
config.vocab_size, config.hidden_size, quant_config=quant_config
)
self.logits_processor = LogitsProcessor(config)
self.pooler = Pooler(pooling_type=PoolingType.LAST, normalize=True)
def calculate_num_image_tokens(self, image_grid_thw: Tuple[int, int, int]):
processor = cached_get_processor(self.config._name_or_path)
grid_t, grid_h, grid_w = image_grid_thw
num_image_tokens = (
grid_t
* grid_h
* grid_w
// processor.image_processor.merge_size
// processor.image_processor.merge_size
)
return num_image_tokens
def pad_input_ids(self, input_ids: List[int], image_inputs: ImageInputs):
new_input_ids = []
last_idx = 0
image_idx = -1
image_inputs.image_offsets = []
# Get all special token IDs
im_start_id = image_inputs.im_start_id
im_end_id = image_inputs.im_end_id
# Find all start and end positions for both types
start_indices = [i for i, x in enumerate(input_ids) if x == im_start_id]
end_indices = [i for i, x in enumerate(input_ids) if x == im_end_id]
if len(start_indices) != len(end_indices):
return input_ids
# Process each region (both image and slice)
for start_idx, end_idx in zip(start_indices, end_indices):
# Add non-image tokens before this region
new_input_ids.extend(input_ids[last_idx : start_idx + 1])
is_image_start = input_ids[start_idx] == im_start_id
if is_image_start:
image_inputs.image_offsets += [start_idx]
image_idx += 1
num_tokens = end_idx - start_idx - 1 # exclude start and end tokens
# Generate pad_ids
pad_values = [image_inputs.pad_values[image_idx]]
pad_ids = pad_values * ((num_tokens + len(pad_values)) // len(pad_values))
pad_ids = pad_ids[:num_tokens]
# Add pad_ids
new_input_ids.extend(pad_ids)
# Update last_idx to after end token
last_idx = end_idx
# Add remaining tokens after last region
new_input_ids.extend(input_ids[last_idx:])
assert len(input_ids) == len(new_input_ids)
return new_input_ids
def _process_image_input(self, image_input: Qwen2VLImageInputs) -> torch.Tensor:
pixel_values = image_input["pixel_values"].type(self.visual.dtype)
image_embeds = self.visual(pixel_values, grid_thw=image_input["image_grid_thw"])
return image_embeds
def _process_video_input(self, video_input: Qwen2VLVideoInputs) -> torch.Tensor:
pixel_values_videos = video_input["pixel_values_videos"].type(self.visual.dtype)
video_embeds = self.visual(
pixel_values_videos, grid_thw=video_input["video_grid_thw"]
)
return video_embeds
def forward(
self,
input_ids: torch.Tensor,
positions: torch.Tensor,
forward_batch: ForwardBatch,
get_embedding: bool = False,
):
"""Run forward pass for Qwen2_5-VL.
Args:
input_ids: Flattened (concatenated) input_ids corresponding to a
batch.
positions: Flattened (concatenated) position ids corresponding to a
batch.
**NOTE**: If mrope is enabled (default setting for Qwen2-VL
opensource models), the shape will be `(3, seq_len)`,
otherwise it will be `(seq_len,).
(Use input_metadata.mrope_positions to replace it)
"""
if getattr(self.config, "rope_scaling", {}).get("type", None) == "mrope":
positions = forward_batch.mrope_positions
image_inputs = None
if forward_batch.image_inputs is not None:
image_inputs = [
img for img in forward_batch.image_inputs if img is not None
]
if (
forward_batch.forward_mode.is_decode()
or image_inputs is None
or len(image_inputs) == 0
):
inputs_embeds = self.model.embed_tokens(input_ids)
else:
if getattr(self.config, "rope_scaling", {}).get("type", None) == "mrope":
assert positions.ndim == 2 and positions.size(0) == 3, (
"multimodal section rotary embedding requires "
f"(3, seq_len) positions, but got {positions.size()}"
)
# Clamp input ids. This is because the input_ids for the image tokens are
# filled with the hash values of the image for the prefix matching in the radix attention.
# There values are useless because their embeddings will be replaced by vision embeddings anyway.
input_ids.clamp_(min=0, max=self.config.vocab_size - 1)
# [B, s, hidden_size]
inputs_embeds = self.model.embed_tokens(input_ids)
extend_start_loc_cpu = forward_batch.extend_start_loc.cpu().numpy()
prefix_lens_cpu = forward_batch.extend_prefix_lens_cpu
for i, image in enumerate(forward_batch.image_inputs):
if image is None:
continue
start_idx = extend_start_loc_cpu[i]
prefix_len = prefix_lens_cpu[i]
pixel_values = image.pixel_values.clone().detach().requires_grad_(False)
image_grid_thws = torch.tensor(
np.array(image.image_grid_thws), device="cuda"
)
image_offsets = image.image_offsets
image_input = Qwen2VLImageInputs(
pixel_values=pixel_values, image_grid_thw=image_grid_thws
)
image_embeds = self._process_image_input(image_input)
image_embeds_offset = 0
for idx, image_offset in enumerate(image_offsets):
if image_offset < prefix_len:
continue
num_image_tokens = self.calculate_num_image_tokens(
image_grid_thws[idx]
)
left_idx = start_idx + (image_offset - prefix_len)
right_idx = left_idx + num_image_tokens
tp_size = get_tensor_model_parallel_world_size()
hidden_size = image_embeds.shape[-1]
if hidden_size % tp_size != 0:
padding_size = tp_size - (hidden_size % tp_size)
image_embeds = F.pad(image_embeds, (0, padding_size))
inputs_embeds = F.pad(inputs_embeds, (0, padding_size))
hidden_chunk_size = image_embeds.shape[-1] // tp_size
rank = get_tensor_model_parallel_rank()
start_dim = rank * hidden_chunk_size
end_dim = (rank + 1) * hidden_chunk_size
inputs_embeds[left_idx:right_idx, ..., start_dim:end_dim] = (
image_embeds[
image_embeds_offset : image_embeds_offset
+ num_image_tokens,
...,
start_dim:end_dim,
]
)
image_embeds_offset += num_image_tokens
input_ids = None
hidden_states = self.model(
input_ids=input_ids,
positions=positions,
forward_batch=forward_batch,
input_embeds=inputs_embeds,
)
if not get_embedding:
return self.logits_processor(
input_ids, hidden_states, self.lm_head, forward_batch
)
else:
return self.pooler(hidden_states, forward_batch)
def load_weights(self, weights: Iterable[Tuple[str, torch.Tensor]]):
stacked_params_mapping = [
# (param_name, shard_name, shard_id)
("qkv_proj", "q_proj", "q"),
("qkv_proj", "k_proj", "k"),
("qkv_proj", "v_proj", "v"),
("gate_up_proj", "up_proj", 1),
("gate_up_proj", "gate_proj", 0),
]
params_dict = dict(self.named_parameters(remove_duplicate=False))
for name, loaded_weight in weights:
if "rotary_emb.inv_freq" in name:
continue
for param_name, weight_name, shard_id in stacked_params_mapping:
if weight_name not in name:
continue
if "visual" in name:
continue
name = name.replace(weight_name, param_name)
# Skip loading extra bias for GPTQ models.
if name.endswith(".bias") and name not in params_dict:
continue
param = params_dict[name]
weight_loader = param.weight_loader
weight_loader(param, loaded_weight, shard_id)
break
else:
if "visual" in name and "qkv.weight" in name:
visual_num_heads = self.config.vision_config.num_heads
visual_embed_dim = self.config.vision_config.hidden_size
head_size = visual_embed_dim // visual_num_heads
loaded_weight = loaded_weight.view(
3, visual_num_heads, head_size, visual_embed_dim
)
loaded_weight = loaded_weight.transpose(0, 1)
loaded_weight = loaded_weight.reshape(-1, visual_embed_dim)
elif "visual" in name and "qkv.bias" in name:
visual_num_heads = self.config.vision_config.num_heads
visual_embed_dim = self.config.vision_config.hidden_size
head_size = visual_embed_dim // visual_num_heads
loaded_weight = loaded_weight.view(3, visual_num_heads, head_size)
loaded_weight = loaded_weight.transpose(0, 1)
loaded_weight = loaded_weight.reshape(-1)
if "visual" in name:
# adapt to VisionAttention
name = name.replace(r"attn.qkv.", r"attn.qkv_proj.")
try:
# Skip loading extra bias for GPTQ models.
if name.endswith(".bias") and name not in params_dict:
continue
param = params_dict[name]
except KeyError:
print(params_dict.keys())
raise
weight_loader = getattr(param, "weight_loader", default_weight_loader)
weight_loader(param, loaded_weight)
EntryClass = [Qwen2_5_VLForConditionalGeneration]
AutoModel.register(Qwen2_5_VLConfig, Qwen2_5_VLForConditionalGeneration)
......@@ -31,8 +31,9 @@ import torch
import torch.nn as nn
import torch.nn.functional as F
from einops import rearrange
from transformers import Qwen2VLConfig
from transformers.models.qwen2_vl.configuration_qwen2_vl import Qwen2VLVisionConfig
from sglang.srt.configs import Qwen2VLConfig, Qwen2VLVisionConfig
from sglang.srt.hf_transformers_utils import get_processor
from sglang.srt.layers.activation import QuickGELU
from sglang.srt.layers.attention.vision import VisionAttention
......
......@@ -252,6 +252,18 @@ class TestOpenAIVisionServer(unittest.TestCase):
print("-" * 30)
# Add assertions to validate the video response
assert "iPod" in video_response or "device" in video_response, video_response
assert (
"man" in video_response
or "person" in video_response
or "individual" in video_response
), video_response
assert (
"present" in video_response
or "examine" in video_response
or "display" in video_response
)
assert "black" in video_response or "dark" in video_response
self.assertIsNotNone(video_response)
self.assertGreater(len(video_response), 0)
......@@ -366,6 +378,30 @@ class TestQWen2VLServer(TestOpenAIVisionServer):
cls.base_url += "/v1"
class TestQWen2_5_VLServer(TestOpenAIVisionServer):
@classmethod
def setUpClass(cls):
cls.model = "Qwen/Qwen2.5-VL-7B-Instruct"
cls.base_url = DEFAULT_URL_FOR_TEST
cls.api_key = "sk-123456"
cls.process = popen_launch_server(
cls.model,
cls.base_url,
timeout=DEFAULT_TIMEOUT_FOR_SERVER_LAUNCH,
api_key=cls.api_key,
other_args=[
"--chat-template",
"qwen2-vl",
# FIXME: workaround to chunked prefill within image embeds
"--chunked-prefill-size",
"10000",
"--mem-fraction-static",
"0.4",
],
)
cls.base_url += "/v1"
class TestQWen2VLServerContextLengthIssue(unittest.TestCase):
@classmethod
def setUpClass(cls):
......
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment