"vscode:/vscode.git/clone" did not exist on "c54f36f0872f0cf131a0880cb80b69cc9ad8f346"
Unverified Commit b6b57fc2 authored by Yineng Zhang's avatar Yineng Zhang Committed by GitHub
Browse files

minor: cleanup sgl-kernel (#2679)

parent b4403985
...@@ -28,7 +28,6 @@ find_package(Torch REQUIRED) ...@@ -28,7 +28,6 @@ find_package(Torch REQUIRED)
# Warp Reduce library # Warp Reduce library
add_library(_kernels SHARED add_library(_kernels SHARED
src/sgl-kernel/csrc/warp_reduce_kernel.cu
src/sgl-kernel/csrc/trt_reduce_internal.cu src/sgl-kernel/csrc/trt_reduce_internal.cu
src/sgl-kernel/csrc/trt_reduce_kernel.cu src/sgl-kernel/csrc/trt_reduce_kernel.cu
src/sgl-kernel/csrc/moe_align_kernel.cu src/sgl-kernel/csrc/moe_align_kernel.cu
......
import os
import shutil
import zipfile
from pathlib import Path from pathlib import Path
from setuptools import setup from setuptools import setup
...@@ -16,39 +13,6 @@ def get_version(): ...@@ -16,39 +13,6 @@ def get_version():
return line.split("=")[1].strip().strip('"') return line.split("=")[1].strip().strip('"')
def rename_wheel():
if not os.environ.get("CUDA_VERSION"):
return
cuda_version = os.environ["CUDA_VERSION"].replace(".", "")
base_version = get_version()
wheel_dir = Path("dist")
old_wheel = next(wheel_dir.glob("*.whl"))
tmp_dir = wheel_dir / "tmp"
tmp_dir.mkdir(exist_ok=True)
with zipfile.ZipFile(old_wheel, "r") as zip_ref:
zip_ref.extractall(tmp_dir)
old_info = tmp_dir / f"sgl_kernel-{base_version}.dist-info"
new_info = tmp_dir / f"sgl_kernel-{base_version}.post0+cu{cuda_version}.dist-info"
old_info.rename(new_info)
platform = "manylinux2014_x86_64"
new_wheel = wheel_dir / old_wheel.name.replace("linux_x86_64", platform)
new_wheel = wheel_dir / new_wheel.name.replace(
base_version, f"{base_version}.post0+cu{cuda_version}"
)
with zipfile.ZipFile(new_wheel, "w", zipfile.ZIP_DEFLATED) as new_zip:
for file_path in tmp_dir.rglob("*"):
if file_path.is_file():
new_zip.write(file_path, file_path.relative_to(tmp_dir))
old_wheel.unlink()
shutil.rmtree(tmp_dir)
def update_wheel_platform_tag(): def update_wheel_platform_tag():
wheel_dir = Path("dist") wheel_dir = Path("dist")
old_wheel = next(wheel_dir.glob("*.whl")) old_wheel = next(wheel_dir.glob("*.whl"))
...@@ -81,7 +45,6 @@ ext_modules = [ ...@@ -81,7 +45,6 @@ ext_modules = [
CUDAExtension( CUDAExtension(
name="sgl_kernel.ops._kernels", name="sgl_kernel.ops._kernels",
sources=[ sources=[
"src/sgl-kernel/csrc/warp_reduce_kernel.cu",
"src/sgl-kernel/csrc/trt_reduce_internal.cu", "src/sgl-kernel/csrc/trt_reduce_internal.cu",
"src/sgl-kernel/csrc/trt_reduce_kernel.cu", "src/sgl-kernel/csrc/trt_reduce_kernel.cu",
"src/sgl-kernel/csrc/moe_align_kernel.cu", "src/sgl-kernel/csrc/moe_align_kernel.cu",
......
...@@ -3,12 +3,10 @@ from sgl_kernel.ops import ( ...@@ -3,12 +3,10 @@ from sgl_kernel.ops import (
custom_reduce, custom_reduce,
init_custom_reduce, init_custom_reduce,
moe_align_block_size, moe_align_block_size,
warp_reduce,
) )
__all__ = [ __all__ = [
"moe_align_block_size", "moe_align_block_size",
"warp_reduce",
"init_custom_reduce", "init_custom_reduce",
"custom_dispose", "custom_dispose",
"custom_reduce", "custom_reduce",
......
#include "utils.hpp" #include "utils.hpp"
// warp_reduce
torch::Tensor warp_reduce_cuda(torch::Tensor input);
torch::Tensor warp_reduce(torch::Tensor input) {
CHECK_CUDA_INPUT(input);
return warp_reduce_cuda(input);
}
// trt_reduce // trt_reduce
using fptr_t = int64_t; using fptr_t = int64_t;
fptr_t init_custom_ar(int64_t rank_id, int64_t world_size, const std::vector<fptr_t>& buffers, fptr_t init_custom_ar(int64_t rank_id, int64_t world_size, const std::vector<fptr_t>& buffers,
...@@ -21,8 +13,6 @@ void moe_align_block_size(torch::Tensor topk_ids, int64_t num_experts, int64_t b ...@@ -21,8 +13,6 @@ void moe_align_block_size(torch::Tensor topk_ids, int64_t num_experts, int64_t b
torch::Tensor token_cnts_buffer, torch::Tensor cumsum_buffer); torch::Tensor token_cnts_buffer, torch::Tensor cumsum_buffer);
PYBIND11_MODULE(TORCH_EXTENSION_NAME, m) { PYBIND11_MODULE(TORCH_EXTENSION_NAME, m) {
// warp_reduce
m.def("reduce", &warp_reduce, "Warp Reduce (CUDA)");
// trt_reduce // trt_reduce
m.def("init_custom_ar", &init_custom_ar, "init custom allreduce meta (CUDA)"); m.def("init_custom_ar", &init_custom_ar, "init custom allreduce meta (CUDA)");
m.def("dispose", &dispose, "dispose custom allreduce meta"); m.def("dispose", &dispose, "dispose custom allreduce meta");
......
#include <cuda.h>
#include <cuda_runtime.h>
#include "utils.hpp"
#define FINAL_MASK 0xffffffff
#define BLOCK_SIZE 256
template <typename scalar_t>
__device__ __forceinline__ scalar_t add(scalar_t a, scalar_t b) {
return a + b;
}
template <typename scalar_t>
__device__ __forceinline__ scalar_t warpReduceSum(scalar_t val) {
#pragma unroll
for (int offset = 16; offset > 0; offset /= 2) {
val += __shfl_down_sync(FINAL_MASK, val, offset);
}
return val;
}
template <typename scalar_t>
__device__ __forceinline__ scalar_t blockReduceSum(scalar_t val) {
__shared__ scalar_t shared[32];
int lane = threadIdx.x % 32;
int wid = threadIdx.x / 32;
val = warpReduceSum(val); // First reduce within warp
if (lane == 0) shared[wid] = val; // Write reduced value to shared memory
__syncthreads(); // Wait for all partial reductions
// Read from shared memory only if that warp existed
val = (threadIdx.x < (blockDim.x / 32)) ? shared[lane] : 0;
if (wid == 0) val = warpReduceSum(val); // Final reduce within first warp
return val;
}
template <typename scalar_t>
__global__ void warp_reduce_cuda_kernel(
const torch::PackedTensorAccessor32<scalar_t, 1, torch::RestrictPtrTraits> input,
torch::PackedTensorAccessor32<scalar_t, 1, torch::RestrictPtrTraits> output, int N) {
scalar_t sum = 0;
// Grid-stride loop
for (int i = blockIdx.x * blockDim.x + threadIdx.x; i < N; i += blockDim.x * gridDim.x) {
sum += input[i];
}
// Perform block-wide reduction
sum = blockReduceSum(sum);
// Write result for this block to global memory
if (threadIdx.x == 0) {
output[blockIdx.x] = sum;
}
}
torch::Tensor warp_reduce_cuda(torch::Tensor input) {
// Input validation
TORCH_CHECK(input.dim() == 1, "1D tensor expected");
TORCH_CHECK(input.is_cuda(), "CUDA tensor expected");
const auto N = input.size(0);
// Handle empty tensor
if (N == 0) {
return torch::zeros({1}, input.options());
}
// Calculate grid dimensions
const int threads = BLOCK_SIZE;
const int blocks = (N + threads - 1) / threads;
// Allocate output tensor for partial sums
auto output = torch::empty({blocks}, input.options());
AT_DISPATCH_FLOATING_TYPES(input.scalar_type(), "warp_reduce_cuda", ([&] {
warp_reduce_cuda_kernel<scalar_t><<<blocks, threads>>>(
input.packed_accessor32<scalar_t, 1, torch::RestrictPtrTraits>(),
output.packed_accessor32<scalar_t, 1, torch::RestrictPtrTraits>(), N);
}));
// Sum the partial results
return output.sum();
}
...@@ -2,11 +2,6 @@ from sgl_kernel.ops._kernels import all_reduce as _all_reduce ...@@ -2,11 +2,6 @@ from sgl_kernel.ops._kernels import all_reduce as _all_reduce
from sgl_kernel.ops._kernels import dispose as _dispose from sgl_kernel.ops._kernels import dispose as _dispose
from sgl_kernel.ops._kernels import init_custom_ar as _init_custom_ar from sgl_kernel.ops._kernels import init_custom_ar as _init_custom_ar
from sgl_kernel.ops._kernels import moe_align_block_size as _moe_align_block_size from sgl_kernel.ops._kernels import moe_align_block_size as _moe_align_block_size
from sgl_kernel.ops._kernels import reduce as _reduce
def warp_reduce(input_tensor):
return _reduce(input_tensor)
def init_custom_reduce(rank_id, num_devices, buffers, barrier_in, barrier_out): def init_custom_reduce(rank_id, num_devices, buffers, barrier_in, barrier_out):
......
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment