Unverified Commit b509db58 authored by Yineng Zhang's avatar Yineng Zhang Committed by GitHub
Browse files

feat: remove the dependency on FusedMoE (#2153)

parent dbe17293
...@@ -57,12 +57,23 @@ __all__ = [ ...@@ -57,12 +57,23 @@ __all__ = [
"QUANTIZATION_METHODS", "QUANTIZATION_METHODS",
] ]
"""
def fp8_get_quant_method( def fp8_get_quant_method(self, layer, prefix):
self, layer: torch.nn.Module, prefix: str from vllm.model_executor.layers.linear import LinearBase
) -> Optional["QuantizeMethodBase"]: from vllm.model_executor.layers.quantization.fp8 import (
Fp8LinearMethod,
Fp8MoEMethod,
)
from vllm.model_executor.layers.quantization.utils.quant_utils import (
is_layer_skipped,
)
from sglang.srt.layers.triton_fused_moe.layer import FusedMoE
if isinstance(layer, LinearBase): if isinstance(layer, LinearBase):
if is_layer_skipped(prefix, self.ignored_layers): if is_layer_skipped(prefix, self.ignored_layers):
from sglang.srt.layers.linear import UnquantizedLinearMethod
return UnquantizedLinearMethod() return UnquantizedLinearMethod()
return Fp8LinearMethod(self) return Fp8LinearMethod(self)
elif isinstance(layer, FusedMoE): elif isinstance(layer, FusedMoE):
...@@ -71,4 +82,3 @@ def fp8_get_quant_method( ...@@ -71,4 +82,3 @@ def fp8_get_quant_method(
setattr(Fp8Config, "get_quant_method", fp8_get_quant_method) setattr(Fp8Config, "get_quant_method", fp8_get_quant_method)
"""
from contextlib import contextmanager
from typing import Any, Dict, Optional
import sglang.srt.layers.triton_fused_moe.fused_moe # noqa
from sglang.srt.layers.triton_fused_moe.fused_moe import (
fused_experts,
fused_topk,
get_config_file_name,
grouped_topk,
)
from sglang.srt.layers.triton_fused_moe.layer import (
FusedMoE,
FusedMoEMethodBase,
FusedMoeWeightScaleSupported,
)
_config: Optional[Dict[str, Any]] = None
@contextmanager
def override_config(config):
global _config
old_config = _config
_config = config
yield
_config = old_config
def get_config() -> Optional[Dict[str, Any]]:
return _config
__all__ = [
"FusedMoE",
"FusedMoEMethodBase",
"FusedMoeWeightScaleSupported",
"override_config",
"get_config",
"fused_moe",
"fused_topk",
"fused_experts",
"get_config_file_name",
"grouped_topk",
]
This directory contains tuned configurations for different settings of the fused_moe kernel.
For different settings of
- E (number of experts)
- N (intermediate size)
- device_name (torch.cuda.get_device_name())
the JSON file contains a mapping from M (batch size) to the chosen configuration.
The example configurations provided are for the Mixtral model for TP2 on H100
and TP4 on A100. Mixtral has intermediate size N = 14336, i.e. for TP2 we have
N = 7168 and for TP4 we have N = 3584.
"""Fused MoE kernel."""
import functools
import json
import logging
import os
from typing import Any, Callable, Dict, Optional, Tuple
import torch
import triton
import triton.language as tl
from vllm import _custom_ops as ops
from sglang.srt.utils import direct_register_custom_op, get_device_name
logger = logging.getLogger(__name__)
@triton.jit
def fused_moe_kernel(
# Pointers to matrices
a_ptr,
b_ptr,
c_ptr,
a_scale_ptr,
b_scale_ptr,
topk_weights_ptr,
sorted_token_ids_ptr,
expert_ids_ptr,
num_tokens_post_padded_ptr,
# Matrix dimensions
N,
K,
EM,
num_valid_tokens,
# The stride variables represent how much to increase the ptr by when
# moving by 1 element in a particular dimension. E.g. `stride_am` is
# how much to increase `a_ptr` by to get the element one row down
# (A has M rows).
stride_am,
stride_ak,
stride_be,
stride_bk,
stride_bn,
stride_cm,
stride_cn,
stride_bse,
stride_bsn,
# Meta-parameters
BLOCK_SIZE_M: tl.constexpr,
BLOCK_SIZE_N: tl.constexpr,
BLOCK_SIZE_K: tl.constexpr,
GROUP_SIZE_M: tl.constexpr,
MUL_ROUTED_WEIGHT: tl.constexpr,
top_k: tl.constexpr,
compute_type: tl.constexpr,
use_fp8_w8a8: tl.constexpr,
use_int8_w8a16: tl.constexpr,
):
"""
Implements the fused computation for a Mixture of Experts (MOE) using
token and expert matrices.
Key Parameters:
- A: The input tensor representing tokens with shape (*, K), where '*' can
be any shape representing batches and K is the feature dimension of
each token.
- B: The stacked MOE weight tensor with shape (E, N, K), where E is
the number of experts, K is the input feature dimension, and N is
the output feature dimension.
- C: The output cache tensor with shape (M, topk, N), where M is the
total number of tokens post padding, topk is the number of times
each token is repeated, and N is the output feature dimension.
- sorted_token_ids: A tensor containing the sorted indices of tokens,
repeated topk times and arranged by the expert index they are
assigned to.
- expert_ids: A tensor containing the indices of the expert for each
block. It determines which expert matrix from B should be used for
each block in A.
This kernel performs the multiplication of a token by its corresponding
expert matrix as determined by `expert_ids`. The sorting of
`sorted_token_ids` by expert index and padding ensures divisibility by
BLOCK_SIZE_M, which is necessary to maintain consistency in block matrix
multiplication across different blocks processed by the same expert.
"""
# -----------------------------------------------------------
# Map program ids `pid` to the block of C it should compute.
# This is done in a grouped ordering to promote L2 data reuse.
pid = tl.program_id(axis=0)
num_pid_m = tl.cdiv(EM, BLOCK_SIZE_M)
num_pid_n = tl.cdiv(N, BLOCK_SIZE_N)
num_pid_in_group = GROUP_SIZE_M * num_pid_n
group_id = pid // num_pid_in_group
first_pid_m = group_id * GROUP_SIZE_M
group_size_m = min(num_pid_m - first_pid_m, GROUP_SIZE_M)
pid_m = first_pid_m + ((pid % num_pid_in_group) % group_size_m)
pid_n = (pid % num_pid_in_group) // group_size_m
# ----------------------------------------------------------
# Create pointers for the first blocks of A and B.
# We will advance this pointer as we move in the K direction
# and accumulate
# `a_ptrs` is a block of [BLOCK_SIZE_M, BLOCK_SIZE_K] pointers
# `b_ptrs` is a block of [BLOCK_SIZE_K, BLOCK_SIZE_N] pointers
num_tokens_post_padded = tl.load(num_tokens_post_padded_ptr)
if pid_m * BLOCK_SIZE_M >= num_tokens_post_padded:
return
offs_token_id = pid_m * BLOCK_SIZE_M + tl.arange(0, BLOCK_SIZE_M)
offs_token = tl.load(sorted_token_ids_ptr + offs_token_id)
token_mask = offs_token < num_valid_tokens
offs_bn = (pid_n * BLOCK_SIZE_N + tl.arange(0, BLOCK_SIZE_N)) % N
offs_k = tl.arange(0, BLOCK_SIZE_K)
a_ptrs = a_ptr + (
offs_token[:, None] // top_k * stride_am + offs_k[None, :] * stride_ak
)
off_experts = tl.load(expert_ids_ptr + pid_m)
b_ptrs = (
b_ptr
+ off_experts * stride_be
+ (offs_k[:, None] * stride_bk + offs_bn[None, :] * stride_bn)
)
if use_int8_w8a16:
b_scale_ptrs = (
b_scale_ptr + off_experts * stride_bse + offs_bn[None, :] * stride_bsn
)
b_scale = tl.load(b_scale_ptrs)
if use_fp8_w8a8:
a_scale = tl.load(a_scale_ptr)
b_scale = tl.load(b_scale_ptr + off_experts)
# -----------------------------------------------------------
# Iterate to compute a block of the C matrix.
# We accumulate into a `[BLOCK_SIZE_M, BLOCK_SIZE_N]` block
# of fp32 values for higher accuracy.
# `accumulator` will be converted back to fp16 after the loop.
accumulator = tl.zeros((BLOCK_SIZE_M, BLOCK_SIZE_N), dtype=tl.float32)
for k in range(0, tl.cdiv(K, BLOCK_SIZE_K)):
# Load the next block of A and B, generate a mask by checking the
# K dimension.
a = tl.load(
a_ptrs,
mask=token_mask[:, None] & (offs_k[None, :] < K - k * BLOCK_SIZE_K),
other=0.0,
)
b = tl.load(b_ptrs, mask=offs_k[:, None] < K - k * BLOCK_SIZE_K, other=0.0)
# We accumulate along the K dimension.
if use_int8_w8a16:
accumulator = tl.dot(a, b.to(compute_type), acc=accumulator)
elif use_fp8_w8a8:
accumulator = tl.dot(a, b, acc=accumulator)
else:
accumulator += tl.dot(a, b)
# Advance the ptrs to the next K block.
a_ptrs += BLOCK_SIZE_K * stride_ak
b_ptrs += BLOCK_SIZE_K * stride_bk
if MUL_ROUTED_WEIGHT:
moe_weight = tl.load(topk_weights_ptr + offs_token, mask=token_mask, other=0)
accumulator = accumulator * moe_weight[:, None]
if use_int8_w8a16:
accumulator = (accumulator * b_scale).to(compute_type)
elif use_fp8_w8a8:
accumulator = (accumulator * a_scale * b_scale).to(compute_type)
else:
accumulator = accumulator.to(compute_type)
# -----------------------------------------------------------
# Write back the block of the output
offs_cn = pid_n * BLOCK_SIZE_N + tl.arange(0, BLOCK_SIZE_N)
c_ptrs = c_ptr + stride_cm * offs_token[:, None] + stride_cn * offs_cn[None, :]
c_mask = token_mask[:, None] & (offs_cn[None, :] < N)
tl.store(c_ptrs, accumulator, mask=c_mask)
def moe_align_block_size(
topk_ids: torch.Tensor, block_size: int, num_experts: int
) -> Tuple[torch.Tensor, torch.Tensor, torch.Tensor]:
"""
Aligns the token distribution across experts to be compatible with block
size for matrix multiplication.
Parameters:
- topk_ids: A tensor of shape [total_tokens, top_k] representing the
top-k expert indices for each token.
- block_size: The block size used in block matrix multiplication.
- num_experts: The total number of experts.
Returns:
- sorted_token_ids: A tensor containing the sorted token indices according
to their allocated expert.
- expert_ids: A tensor indicating the assigned expert index for each block.
- num_tokens_post_padded: The total number of tokens after padding,
ensuring divisibility by block_size.
This function pads the number of tokens that each expert needs to process
so that it is divisible by block_size.
Padding ensures that during block matrix multiplication, the dimensions
align correctly.
Example:
Given topk_ids = [[2, 3, 4], [1, 2, 4], [1, 3, 4], [1, 2, 3]],
block_size = 4, and num_experts = 4:
- We initially have 12 tokens (after repeating 'top_k' times) and 4 experts,
with each expert needing to process 3 tokens.
- As block_size is 4, we pad 1 token for each expert.
- First, flatten topk_ids to [2, 3, 4, 1, 2, 4, 1, 3, 4, 1, 2, 3].
- Then append padding tokens [12, 12, 12, 12] for each block.
- After sorting by expert index, we obtain token_ids
[3, 6, 9, 12, 0, 4, 10, 12, 1, 7, 11, 12, 2, 5, 8, 12].
Tokens 12 are non-existent (padding) and are ignored in
the subsequent matrix multiplication.
- The padding ensures that the total number of tokens is now divisible
by block_size for proper block matrix operations.
"""
max_num_tokens_padded = topk_ids.numel() + num_experts * (block_size - 1)
sorted_ids = torch.empty(
(max_num_tokens_padded,), dtype=torch.int32, device=topk_ids.device
)
sorted_ids.fill_(topk_ids.numel())
max_num_m_blocks = triton.cdiv(max_num_tokens_padded, block_size)
expert_ids = torch.empty(
(max_num_m_blocks,), dtype=torch.int32, device=topk_ids.device
)
num_tokens_post_pad = torch.empty((1), dtype=torch.int32, device=topk_ids.device)
ops.moe_align_block_size(
topk_ids, num_experts, block_size, sorted_ids, expert_ids, num_tokens_post_pad
)
return sorted_ids, expert_ids, num_tokens_post_pad
def invoke_fused_moe_kernel(
A: torch.Tensor,
B: torch.Tensor,
C: torch.Tensor,
A_scale: Optional[torch.Tensor],
B_scale: Optional[torch.Tensor],
topk_weights: torch.Tensor,
topk_ids: torch.Tensor,
sorted_token_ids: torch.Tensor,
expert_ids: torch.Tensor,
num_tokens_post_padded: torch.Tensor,
mul_routed_weight: bool,
top_k: int,
config: Dict[str, Any],
compute_type: tl.dtype,
use_fp8_w8a8: bool,
use_int8_w8a16: bool,
) -> None:
assert topk_weights.stride(1) == 1
assert sorted_token_ids.stride(0) == 1
if use_fp8_w8a8:
A, A_scale = ops.scaled_fp8_quant(A, A_scale)
assert B_scale is not None
elif use_int8_w8a16:
assert B_scale is not None
else:
assert A_scale is None
assert B_scale is None
grid = lambda META: (
triton.cdiv(sorted_token_ids.shape[0], META["BLOCK_SIZE_M"])
* triton.cdiv(B.shape[1], META["BLOCK_SIZE_N"]),
)
fused_moe_kernel[grid](
A,
B,
C,
A_scale,
B_scale,
topk_weights,
sorted_token_ids,
expert_ids,
num_tokens_post_padded,
B.shape[1],
B.shape[2],
sorted_token_ids.shape[0],
topk_ids.numel(),
A.stride(0),
A.stride(1),
B.stride(0),
B.stride(2),
B.stride(1),
C.stride(1),
C.stride(2),
B_scale.stride(0) if B_scale is not None and use_int8_w8a16 else 0,
B_scale.stride(1) if B_scale is not None and use_int8_w8a16 else 0,
MUL_ROUTED_WEIGHT=mul_routed_weight,
top_k=top_k,
compute_type=compute_type,
use_fp8_w8a8=use_fp8_w8a8,
use_int8_w8a16=use_int8_w8a16,
**config,
)
def get_config_file_name(E: int, N: int, dtype: Optional[str]) -> str:
device_name = get_device_name().replace(" ", "_")
dtype_selector = "" if not dtype else f",dtype={dtype}"
return f"E={E},N={N},device_name={device_name}{dtype_selector}.json"
@functools.lru_cache
def get_moe_configs(E: int, N: int, dtype: Optional[str]) -> Optional[Dict[int, Any]]:
"""
Return optimized configurations for the fused MoE kernel.
The return value will be a dictionary that maps an irregular grid of
batch sizes to configurations of the fused_moe kernel. To evaluate the
kernel on a given batch size bs, the closest batch size in the grid should
be picked and the associated configuration chosen to invoke the kernel.
"""
# First look up if an optimized configuration is available in the configs
# directory
json_file_name = get_config_file_name(E, N, dtype)
config_file_path = os.path.join(
os.path.dirname(os.path.realpath(__file__)), "configs", json_file_name
)
if os.path.exists(config_file_path):
with open(config_file_path) as f:
logger.info("Using configuration from %s for MoE layer.", config_file_path)
# If a configuration has been found, return it
return {int(key): val for key, val in json.load(f).items()}
# If no optimized configuration is available, we will use the default
# configuration
logger.warning(
(
"Using default MoE config. Performance might be sub-optimal! "
"Config file not found at %s"
),
config_file_path,
)
return None
def get_default_config(
M: int,
E: int,
N: int,
K: int,
topk: int,
dtype: Optional[str],
is_marlin: bool,
) -> Dict[str, int]:
config = {
"BLOCK_SIZE_M": 64,
"BLOCK_SIZE_N": 64,
"BLOCK_SIZE_K": 32,
"GROUP_SIZE_M": 8,
}
# A heuristic: fused marlin works faster with this config for small M
if M <= E or (is_marlin and M <= 32):
config = {
"BLOCK_SIZE_M": 16,
"BLOCK_SIZE_N": 32,
"BLOCK_SIZE_K": 64,
"GROUP_SIZE_M": 1,
}
return config
def try_get_optimal_moe_config(
w1_shape: Tuple[int, ...],
w2_shape: Tuple[int, ...],
top_k: int,
dtype: Optional[str],
M: int,
is_marlin: bool = False,
):
from sglang.srt.layers.triton_fused_moe import get_config
override_config = get_config()
if override_config:
config = override_config
else:
# First try to load optimal config from the file
E, _, N = w2_shape
configs = get_moe_configs(E, N, dtype)
if configs:
# If an optimal configuration map has been found, look up the
# optimal config
config = configs[min(configs.keys(), key=lambda x: abs(x - M))]
else:
# Else use the default config
config = get_default_config(M, E, N, w1_shape[2], top_k, dtype, is_marlin)
return config
def fused_topk(
hidden_states: torch.Tensor,
gating_output: torch.Tensor,
topk: int,
renormalize: bool,
):
assert hidden_states.shape[0] == gating_output.shape[0], "Number of tokens mismatch"
M, _ = hidden_states.shape
topk_weights = torch.empty(
M, topk, dtype=torch.float32, device=hidden_states.device
)
topk_ids = torch.empty(M, topk, dtype=torch.int32, device=hidden_states.device)
token_expert_indicies = torch.empty(
M, topk, dtype=torch.int32, device=hidden_states.device
)
ops.topk_softmax(
topk_weights,
topk_ids,
token_expert_indicies,
gating_output.float(), # TODO(woosuk): Optimize this.
)
del token_expert_indicies # Not used. Will be used in the future.
if renormalize:
topk_weights = topk_weights / topk_weights.sum(dim=-1, keepdim=True)
return topk_weights, topk_ids
# This is used by the Deepseek-V2 model
def grouped_topk(
hidden_states: torch.Tensor,
gating_output: torch.Tensor,
topk: int,
renormalize: bool,
num_expert_group: int = 0,
topk_group: int = 0,
):
assert hidden_states.shape[0] == gating_output.shape[0], "Number of tokens mismatch"
scores = torch.softmax(gating_output, dim=-1)
num_token = scores.shape[0]
group_scores = (
scores.view(num_token, num_expert_group, -1).max(dim=-1).values
) # [n, n_group]
group_idx = torch.topk(group_scores, k=topk_group, dim=-1, sorted=False)[
1
] # [n, top_k_group]
group_mask = torch.zeros_like(group_scores) # [n, n_group]
group_mask.scatter_(1, group_idx, 1) # [n, n_group]
score_mask = (
group_mask.unsqueeze(-1)
.expand(num_token, num_expert_group, scores.shape[-1] // num_expert_group)
.reshape(num_token, -1)
) # [n, e]
tmp_scores = scores.masked_fill(~score_mask.bool(), 0.0) # [n, e]
topk_weights, topk_ids = torch.topk(tmp_scores, k=topk, dim=-1, sorted=False)
if renormalize:
topk_weights = topk_weights / topk_weights.sum(dim=-1, keepdim=True)
return topk_weights.to(torch.float32), topk_ids.to(torch.int32)
def get_config_dtype_str(
dtype: torch.dtype,
use_int8_w8a16: Optional[bool] = False,
use_fp8_w8a8: Optional[bool] = False,
):
if use_fp8_w8a8:
return "fp8_w8a8"
elif use_int8_w8a16:
return "int8_w8a16"
elif dtype == torch.float:
# avoiding cases where kernel fails when float32 MoE
# use fp16/bfloat16 configs
return "float32"
return None
def inplace_fused_experts(
hidden_states: torch.Tensor,
w1: torch.Tensor,
w2: torch.Tensor,
topk_weights: torch.Tensor,
topk_ids: torch.Tensor,
use_fp8_w8a8: bool = False,
use_int8_w8a16: bool = False,
w1_scale: Optional[torch.Tensor] = None,
w2_scale: Optional[torch.Tensor] = None,
a1_scale: Optional[torch.Tensor] = None,
a2_scale: Optional[torch.Tensor] = None,
) -> None:
fused_experts_impl(
hidden_states,
w1,
w2,
topk_weights,
topk_ids,
True,
use_fp8_w8a8,
use_int8_w8a16,
w1_scale,
w2_scale,
a1_scale,
a2_scale,
)
def inplace_fused_experts_fake(
hidden_states: torch.Tensor,
w1: torch.Tensor,
w2: torch.Tensor,
topk_weights: torch.Tensor,
topk_ids: torch.Tensor,
use_fp8_w8a8: bool = False,
use_int8_w8a16: bool = False,
w1_scale: Optional[torch.Tensor] = None,
w2_scale: Optional[torch.Tensor] = None,
a1_scale: Optional[torch.Tensor] = None,
a2_scale: Optional[torch.Tensor] = None,
) -> None:
pass
direct_register_custom_op(
op_name="inplace_fused_experts",
op_func=inplace_fused_experts,
mutates_args=["hidden_states"],
fake_impl=inplace_fused_experts_fake,
)
def outplace_fused_experts(
hidden_states: torch.Tensor,
w1: torch.Tensor,
w2: torch.Tensor,
topk_weights: torch.Tensor,
topk_ids: torch.Tensor,
use_fp8_w8a8: bool = False,
use_int8_w8a16: bool = False,
w1_scale: Optional[torch.Tensor] = None,
w2_scale: Optional[torch.Tensor] = None,
a1_scale: Optional[torch.Tensor] = None,
a2_scale: Optional[torch.Tensor] = None,
) -> torch.Tensor:
return fused_experts_impl(
hidden_states,
w1,
w2,
topk_weights,
topk_ids,
False,
use_fp8_w8a8,
use_int8_w8a16,
w1_scale,
w2_scale,
a1_scale,
a2_scale,
)
def outplace_fused_experts_fake(
hidden_states: torch.Tensor,
w1: torch.Tensor,
w2: torch.Tensor,
topk_weights: torch.Tensor,
topk_ids: torch.Tensor,
use_fp8_w8a8: bool = False,
use_int8_w8a16: bool = False,
w1_scale: Optional[torch.Tensor] = None,
w2_scale: Optional[torch.Tensor] = None,
a1_scale: Optional[torch.Tensor] = None,
a2_scale: Optional[torch.Tensor] = None,
) -> torch.Tensor:
return torch.empty_like(hidden_states)
direct_register_custom_op(
op_name="outplace_fused_experts",
op_func=outplace_fused_experts,
mutates_args=[],
fake_impl=outplace_fused_experts_fake,
)
def fused_experts(
hidden_states: torch.Tensor,
w1: torch.Tensor,
w2: torch.Tensor,
topk_weights: torch.Tensor,
topk_ids: torch.Tensor,
inplace: bool = False,
use_fp8_w8a8: bool = False,
use_int8_w8a16: bool = False,
w1_scale: Optional[torch.Tensor] = None,
w2_scale: Optional[torch.Tensor] = None,
a1_scale: Optional[torch.Tensor] = None,
a2_scale: Optional[torch.Tensor] = None,
):
if inplace:
torch.ops.sglang.inplace_fused_experts(
hidden_states,
w1,
w2,
topk_weights,
topk_ids,
use_fp8_w8a8,
use_int8_w8a16,
w1_scale,
w2_scale,
a1_scale,
a2_scale,
)
return hidden_states
else:
return torch.ops.sglang.outplace_fused_experts(
hidden_states,
w1,
w2,
topk_weights,
topk_ids,
use_fp8_w8a8,
use_int8_w8a16,
w1_scale,
w2_scale,
a1_scale,
a2_scale,
)
def fused_experts_impl(
hidden_states: torch.Tensor,
w1: torch.Tensor,
w2: torch.Tensor,
topk_weights: torch.Tensor,
topk_ids: torch.Tensor,
inplace: bool = False,
use_fp8_w8a8: bool = False,
use_int8_w8a16: bool = False,
w1_scale: Optional[torch.Tensor] = None,
w2_scale: Optional[torch.Tensor] = None,
a1_scale: Optional[torch.Tensor] = None,
a2_scale: Optional[torch.Tensor] = None,
):
# Check constraints.
assert hidden_states.shape[1] == w1.shape[2], "Hidden size mismatch"
assert topk_weights.shape == topk_ids.shape, "topk shape mismatch"
assert hidden_states.is_contiguous(), "Hidden_states must be contiguous"
assert w1.is_contiguous(), "Expert weights1 must be contiguous"
assert w2.is_contiguous(), "Expert weights2 must be contiguous"
assert hidden_states.dtype in [torch.float32, torch.float16, torch.bfloat16]
num_tokens, _ = hidden_states.shape
E, N, _ = w1.shape
# We execute the fused_moe kernel in chunks to circumvent this issue:
# https://github.com/vllm-project/vllm/issues/5938
CHUNK_SIZE = 64 * 1024
M = min(num_tokens, CHUNK_SIZE)
config_dtype = get_config_dtype_str(
use_fp8_w8a8=use_fp8_w8a8,
use_int8_w8a16=use_int8_w8a16,
dtype=hidden_states.dtype,
)
get_config_func = functools.partial(
try_get_optimal_moe_config,
w1.shape,
w2.shape,
topk_ids.shape[1],
config_dtype,
)
config = get_config_func(M)
intermediate_cache1 = torch.empty(
(M, topk_ids.shape[1], N),
device=hidden_states.device,
dtype=hidden_states.dtype,
)
intermediate_cache2 = torch.empty(
(M * topk_ids.shape[1], N // 2),
device=hidden_states.device,
dtype=hidden_states.dtype,
)
intermediate_cache3 = torch.empty(
(M, topk_ids.shape[1], w2.shape[1]),
device=hidden_states.device,
dtype=hidden_states.dtype,
)
compute_type = tl.bfloat16 if hidden_states.dtype == torch.bfloat16 else tl.float16
if inplace:
out_hidden_states = hidden_states
else:
out_hidden_states = torch.empty_like(hidden_states)
for chunk in range((num_tokens // CHUNK_SIZE) + 1):
begin_chunk_idx, end_chunk_idx = (
chunk * CHUNK_SIZE,
min((chunk + 1) * CHUNK_SIZE, num_tokens),
)
curr_hidden_states = hidden_states[begin_chunk_idx:end_chunk_idx]
tokens_in_chunk, _ = curr_hidden_states.shape
if tokens_in_chunk == 0:
break
if tokens_in_chunk < CHUNK_SIZE and chunk > 0:
# Adjust the intermediate cache size and config for the last
# chunk. Note that in most cases we only have one chunk
# so the cache size and config are already set correctly and
# do not need to be adjusted.
intermediate_cache1 = intermediate_cache1[:tokens_in_chunk]
intermediate_cache2 = intermediate_cache2[:tokens_in_chunk]
intermediate_cache3 = intermediate_cache3[:tokens_in_chunk]
config = get_config_func(tokens_in_chunk)
curr_topk_ids = topk_ids[begin_chunk_idx:end_chunk_idx]
curr_topk_weights = topk_weights[begin_chunk_idx:end_chunk_idx]
sorted_token_ids, expert_ids, num_tokens_post_padded = moe_align_block_size(
curr_topk_ids, config["BLOCK_SIZE_M"], E
)
invoke_fused_moe_kernel(
curr_hidden_states,
w1,
intermediate_cache1,
a1_scale,
w1_scale,
curr_topk_weights,
curr_topk_ids,
sorted_token_ids,
expert_ids,
num_tokens_post_padded,
False,
topk_ids.shape[1],
config,
compute_type=compute_type,
use_fp8_w8a8=use_fp8_w8a8,
use_int8_w8a16=use_int8_w8a16,
)
ops.silu_and_mul(intermediate_cache2, intermediate_cache1.view(-1, N))
invoke_fused_moe_kernel(
intermediate_cache2,
w2,
intermediate_cache3,
a2_scale,
w2_scale,
curr_topk_weights,
curr_topk_ids,
sorted_token_ids,
expert_ids,
num_tokens_post_padded,
True,
1,
config,
compute_type=compute_type,
use_fp8_w8a8=use_fp8_w8a8,
use_int8_w8a16=use_int8_w8a16,
)
ops.moe_sum(
intermediate_cache3.view(*intermediate_cache3.shape),
out_hidden_states[begin_chunk_idx:end_chunk_idx],
)
return out_hidden_states
def fused_moe(
hidden_states: torch.Tensor,
w1: torch.Tensor,
w2: torch.Tensor,
gating_output: torch.Tensor,
topk: int,
renormalize: bool,
inplace: bool = False,
use_grouped_topk: bool = False,
num_expert_group: Optional[int] = None,
topk_group: Optional[int] = None,
custom_routing_function: Optional[Callable] = None,
use_fp8_w8a8: bool = False,
use_int8_w8a16: bool = False,
w1_scale: Optional[torch.Tensor] = None,
w2_scale: Optional[torch.Tensor] = None,
a1_scale: Optional[torch.Tensor] = None,
a2_scale: Optional[torch.Tensor] = None,
) -> torch.Tensor:
"""
This function computes a Mixture of Experts (MoE) layer using two sets of
weights, w1 and w2, and top-k gating mechanism.
Parameters:
- hidden_states (torch.Tensor): The input tensor to the MoE layer.
- w1 (torch.Tensor): The first set of expert weights.
- w2 (torch.Tensor): The second set of expert weights.
- gating_output (torch.Tensor): The output of the gating operation
(before softmax).
- topk (int): The number of top-k experts to select.
- renormalize (bool): If True, renormalize the top-k weights to sum to 1.
- inplace (bool): If True, perform the operation in-place.
Defaults to False.
- num_expert_group: Optional[int]: additional parameter for grouped_topk
- topk_group: Optional[int]: additional parameter for grouped_topk
- use_grouped_topk: If True, use grouped_topk instead of fused_topk
note: Deepseekv2 model uses grouped_topk
- use_fp8_w8a8 (bool): If True, use fp8 arithmetic to compute the inner
products for w1 and w2. Defaults to False.
- use_int8_w8a16 (bool): If True, use fp8 arithmetic to compute the inner
products for w1 and w2. Defaults to False.
- w1_scale (Optional[torch.Tensor]): Optional scale to be used for
w1.
- w2_scale (Optional[torch.Tensor]): Optional scale to be used for
w2.
Returns:
- torch.Tensor: The output tensor after applying the MoE layer.
"""
# Check constraints.
assert gating_output.shape[1] == w1.shape[0], "Number of experts mismatch"
if use_grouped_topk:
assert num_expert_group is not None and topk_group is not None
topk_weights, topk_ids = grouped_topk(
hidden_states,
gating_output,
topk,
renormalize,
num_expert_group,
topk_group,
)
elif custom_routing_function is None:
topk_weights, topk_ids = fused_topk(
hidden_states, gating_output, topk, renormalize
)
else:
topk_weights, topk_ids = custom_routing_function(
hidden_states, gating_output, topk, renormalize
)
return fused_experts(
hidden_states,
w1,
w2,
topk_weights,
topk_ids,
inplace=inplace,
use_fp8_w8a8=use_fp8_w8a8,
use_int8_w8a16=use_int8_w8a16,
w1_scale=w1_scale,
w2_scale=w2_scale,
a1_scale=a1_scale,
a2_scale=a2_scale,
)
from abc import abstractmethod
from enum import Enum
from typing import Callable, List, Optional, Tuple
import torch
from vllm.distributed import (
get_tensor_model_parallel_rank,
get_tensor_model_parallel_world_size,
tensor_model_parallel_all_reduce,
)
from vllm.model_executor.custom_op import CustomOp
from sglang.srt.layers.custom_op_util import register_custom_op
from sglang.srt.layers.quantization.base_config import (
QuantizationConfig,
QuantizeMethodBase,
)
from sglang.srt.utils import set_weight_attrs
if torch.cuda.is_available() or torch.hip.is_available():
from .fused_moe import fused_experts
else:
fused_experts = None # type: ignore
import logging
logger = logging.getLogger(__name__)
class FusedMoeWeightScaleSupported(Enum):
TENSOR = "tensor"
CHANNEL = "channel"
GROUP = "group"
class FusedMoEMethodBase(QuantizeMethodBase):
@abstractmethod
def create_weights(
self,
layer: torch.nn.Module,
num_experts: int,
hidden_size: int,
intermediate_size: int,
params_dtype: torch.dtype,
**extra_weight_attrs,
):
raise NotImplementedError
@abstractmethod
def apply(
self,
layer: torch.nn.Module,
x: torch.Tensor,
router_logits: torch.Tensor,
top_k: int,
renormalize: bool,
use_grouped_topk: bool,
) -> torch.Tensor:
raise NotImplementedError
@register_custom_op("sglang_unquantized_fused_moe")
class UnquantizedFusedMoEMethod(FusedMoEMethodBase, CustomOp):
"""MoE method without quantization."""
def create_weights(
self,
layer: torch.nn.Module,
num_experts: int,
hidden_size: int,
intermediate_size: int,
params_dtype: torch.dtype,
**extra_weight_attrs,
):
# Fused gate_up_proj (column parallel)
w13_weight = torch.nn.Parameter(
torch.empty(
num_experts, 2 * intermediate_size, hidden_size, dtype=params_dtype
),
requires_grad=False,
)
layer.register_parameter("w13_weight", w13_weight)
set_weight_attrs(w13_weight, extra_weight_attrs)
# down_proj (row parallel)
w2_weight = torch.nn.Parameter(
torch.empty(
num_experts, hidden_size, intermediate_size, dtype=params_dtype
),
requires_grad=False,
)
layer.register_parameter("w2_weight", w2_weight)
set_weight_attrs(w2_weight, extra_weight_attrs)
def apply(
self,
layer: torch.nn.Module,
x: torch.Tensor,
router_logits: torch.Tensor,
top_k: int,
renormalize: bool,
use_grouped_topk: bool,
topk_group: Optional[int] = None,
num_expert_group: Optional[int] = None,
custom_routing_function: Optional[Callable] = None,
) -> torch.Tensor:
return self.forward(
x=x,
layer=layer,
router_logits=router_logits,
top_k=top_k,
renormalize=renormalize,
use_grouped_topk=use_grouped_topk,
topk_group=topk_group,
num_expert_group=num_expert_group,
custom_routing_function=custom_routing_function,
)
def forward_cuda(
self,
layer: torch.nn.Module,
x: torch.Tensor,
use_grouped_topk: bool,
top_k: int,
router_logits: torch.Tensor,
renormalize: bool,
topk_group: Optional[int] = None,
num_expert_group: Optional[int] = None,
custom_routing_function: Optional[Callable] = None,
) -> torch.Tensor:
topk_weights, topk_ids = FusedMoE.select_experts(
hidden_states=x,
router_logits=router_logits,
use_grouped_topk=use_grouped_topk,
top_k=top_k,
renormalize=renormalize,
topk_group=topk_group,
num_expert_group=num_expert_group,
custom_routing_function=custom_routing_function,
)
return fused_experts(
hidden_states=x,
w1=layer.w13_weight,
w2=layer.w2_weight,
topk_weights=topk_weights,
topk_ids=topk_ids,
inplace=True,
)
def forward_cpu(self, *args, **kwargs):
raise NotImplementedError("The CPU backend currently does not support MoE.")
def forward_tpu(self, *args, **kwargs) -> torch.Tensor:
raise NotImplementedError("The TPU backend currently does not support MoE.")
forward_native = forward_cuda
class FusedMoE(torch.nn.Module):
"""FusedMoE layer for MoE models.
This layer contains both MergedColumnParallel weights (gate_up_proj /
w13) and RowParallelLinear weights (down_proj/ w2).
Note: Mixtral uses w1, w2, and w3 for gate, up, and down_proj. We
copy that naming convention here and handle any remapping in the
load_weights function in each model implementation.
Args:
num_experts: Number of experts in the model
top_k: Number of experts selected for each token
hidden_size: Input hidden state size of the transformer
intermediate_size: Intermediate size of the experts
params_dtype: Data type for the parameters.
reduce_results: Whether to all all_reduce on the output of the layer
renomalize: Whether to renormalize the logits in the fused_moe kernel
quant_config: Quantization configure.
"""
def __init__(
self,
num_experts: int,
top_k: int,
hidden_size: int,
intermediate_size: int,
params_dtype: Optional[torch.dtype] = None,
reduce_results: bool = False,
renormalize: bool = True,
use_grouped_topk: bool = False,
num_expert_group: Optional[int] = None,
topk_group: Optional[int] = None,
quant_config: Optional[QuantizationConfig] = None,
tp_size: Optional[int] = None,
prefix: str = "",
custom_routing_function: Optional[Callable] = None,
):
super().__init__()
if params_dtype is None:
params_dtype = torch.get_default_dtype()
self.tp_size = (
tp_size if tp_size is not None else get_tensor_model_parallel_world_size()
)
self.top_k = top_k
self.num_experts = num_experts
self.intermediate_size_per_partition = intermediate_size // self.tp_size
self.reduce_results = reduce_results
self.renormalize = renormalize
self.use_grouped_topk = use_grouped_topk
if self.use_grouped_topk:
assert num_expert_group is not None and topk_group is not None
self.num_expert_group = num_expert_group
self.topk_group = topk_group
self.custom_routing_function = custom_routing_function
if quant_config is None:
self.quant_method: Optional[QuantizeMethodBase] = (
UnquantizedFusedMoEMethod()
)
else:
self.quant_method = quant_config.get_quant_method(self, prefix)
assert self.quant_method is not None
self.quant_method.create_weights(
layer=self,
num_experts=num_experts,
hidden_size=hidden_size,
intermediate_size=self.intermediate_size_per_partition,
params_dtype=params_dtype,
weight_loader=self.weight_loader,
)
def _load_per_tensor_weight_scale(
self,
shard_id: str,
param: torch.nn.Parameter,
loaded_weight: torch.Tensor,
expert_id: int,
):
param_data = param.data
# for per tensor weight quantization
if shard_id in ("w1", "w3"):
# We have to keep the weight scales of w1 and w3 because
# we need to re-quantize w1/w3 weights after weight loading.
idx = 0 if shard_id == "w1" else 1
param_data[expert_id][idx] = loaded_weight
# If we are in the row parallel case (down_proj)
elif shard_id == "w2":
param_data[expert_id] = loaded_weight
def _load_model_weight_or_group_weight_scale(
self,
shard_dim: int,
expert_data: torch.Tensor,
shard_id: str,
loaded_weight: torch.tensor,
tp_rank: int,
):
# Load grouped weight scales for group quantization
# or model weights
if shard_id == "w2":
self._load_w2(
shard_id=shard_id,
shard_dim=shard_dim,
loaded_weight=loaded_weight,
expert_data=expert_data,
tp_rank=tp_rank,
)
elif shard_id in ("w1", "w3"):
self._load_w13(
shard_id=shard_id,
shard_dim=shard_dim,
loaded_weight=loaded_weight,
expert_data=expert_data,
tp_rank=tp_rank,
)
def _load_per_channel_weight_scale(
self,
expert_data: torch.Tensor,
shard_dim: int,
shard_id: str,
loaded_weight: torch.tensor,
tp_rank: int,
):
# for per channel weight quantization
if shard_id == "w2":
expert_data.copy_(loaded_weight)
elif shard_id in ("w1", "w3"):
self._load_w13(
shard_id=shard_id,
shard_dim=shard_dim,
loaded_weight=loaded_weight,
expert_data=expert_data,
tp_rank=tp_rank,
)
def _load_w13(
self,
expert_data: torch.Tensor,
shard_dim: int,
shard_id: str,
loaded_weight: torch.tensor,
tp_rank: int,
):
# Index the loaded weight for tp sharding.
# gate_up_proj: "MergedColumnParallel", so tp sharding on output_dim
shard_size = expert_data.shape[shard_dim] // 2
loaded_weight = loaded_weight.narrow(
shard_dim, shard_size * tp_rank, shard_size
)
# Narrow parameter and load.
# w1, gate_proj: Load into first logical weight of w13.
if shard_id == "w1":
expert_data = expert_data.narrow(shard_dim, 0, shard_size)
# w3, up_proj: Load into second logical weight of w13.
else:
assert shard_id == "w3"
expert_data = expert_data.narrow(shard_dim, shard_size, shard_size)
expert_data.copy_(loaded_weight)
def _load_w2(
self,
expert_data: torch.Tensor,
shard_dim: int,
shard_id: str,
loaded_weight: torch.tensor,
tp_rank: int,
):
# Index the loaded weight for tp sharding.
# down_proj: "RowParallel" so tp sharding on input_dim
# Narrow parameter and load.
shard_size = expert_data.shape[shard_dim]
loaded_weight = loaded_weight.narrow(
shard_dim, shard_size * tp_rank, shard_size
)
# w2, down_proj: Load into only logical weight of w2.
expert_data.copy_(loaded_weight)
def _load_single_value(
self, param: torch.nn.Parameter, loaded_weight: torch.Tensor, expert_id: int
):
param_data = param.data
# Input scales can be loaded directly and should be equal.
param_data[expert_id] = loaded_weight
def _load_g_idx(
self,
shard_id: str,
expert_data: torch.Tensor,
shard_dim: int,
loaded_weight: torch.tensor,
tp_rank: int,
):
if shard_id == "w2":
self._load_w2(
shard_id=shard_id,
shard_dim=shard_dim,
loaded_weight=loaded_weight,
expert_data=expert_data,
tp_rank=tp_rank,
)
else:
assert shard_id in ("w1", "w3")
expert_data.copy_(loaded_weight)
def weight_loader(
self,
param: torch.nn.Parameter,
loaded_weight: torch.Tensor,
weight_name: str,
shard_id: str,
expert_id: int,
) -> None:
# compressed-tensors checkpoints with packed weights are stored flipped
# TODO (mgoin): check self.quant_method.quant_config.quant_format
# against known CompressionFormat enum values that have this quality
loaded_weight = (
loaded_weight.t().contiguous()
if (
self.quant_method.__class__.__name__
== "CompressedTensorsWNA16MoEMethod"
)
else loaded_weight
)
if shard_id not in ("w1", "w2", "w3"):
raise ValueError(
f"shard_id must be ['w1','w2','w3'] but " f"got {shard_id}."
)
WEIGHT_SCALE_SUPPORTED = [e.value for e in FusedMoeWeightScaleSupported]
# Fetch the dim to shard the parameter/loaded weight
# based on the shard id. This will be whatever
# dimension intermediate_size is used.
SHARD_ID_TO_SHARDED_DIM = {"w1": 0, "w2": 1, "w3": 0}
expert_data = param.data[expert_id]
tp_rank = get_tensor_model_parallel_rank()
# is_transposed: if the dim to shard the weight
# should be flipped. Required by GPTQ, compressed-tensors
# should be whatever dimension intermediate_size is
is_transposed = getattr(param, "is_transposed", False)
shard_dim = SHARD_ID_TO_SHARDED_DIM[shard_id]
if is_transposed:
shard_dim = ~shard_dim
# Case input scale: input_scale loading is only supported for fp8
if "input_scale" in weight_name:
# this is needed for compressed-tensors only
loaded_weight = loaded_weight.to(param.data.device)
if (
param.data[expert_id] != 1
and (param.data[expert_id] - loaded_weight).abs() > 1e-5
):
raise ValueError(
"input_scales of w1 and w3 of a layer "
f"must be equal. But got {param.data[expert_id]} "
f"vs. {loaded_weight}"
)
self._load_single_value(
param=param, loaded_weight=loaded_weight, expert_id=expert_id
)
return
# Case g_idx
if "g_idx" in weight_name:
self._load_g_idx(
shard_dim=0,
shard_id=shard_id,
loaded_weight=loaded_weight,
expert_data=expert_data,
tp_rank=tp_rank,
)
return
# Case weight scales and zero_points
if "scale" in weight_name or "zero" in weight_name:
# load the weight scales and zp based on the quantization scheme
# supported weight scales/zp can be found in
# FusedMoeWeightScaleSupported
# TODO @dsikka: once hardened, refactor to use vLLM Parameters
# specific to each case
quant_method = getattr(param, "quant_method", None)
if quant_method == FusedMoeWeightScaleSupported.CHANNEL.value:
self._load_per_channel_weight_scale(
shard_id=shard_id,
shard_dim=shard_dim,
loaded_weight=loaded_weight,
expert_data=expert_data,
tp_rank=tp_rank,
)
elif quant_method == FusedMoeWeightScaleSupported.GROUP.value:
self._load_model_weight_or_group_weight_scale(
shard_id=shard_id,
shard_dim=shard_dim,
loaded_weight=loaded_weight,
expert_data=expert_data,
tp_rank=tp_rank,
)
elif quant_method == FusedMoeWeightScaleSupported.TENSOR.value:
self._load_per_tensor_weight_scale(
shard_id=shard_id,
param=param,
loaded_weight=loaded_weight,
expert_id=expert_id,
)
else:
raise ValueError(
f"quant method must be one of {WEIGHT_SCALE_SUPPORTED}"
)
return
# Case weight_shape
if "weight_shape" in weight_name:
# only required by compressed-tensors
self._load_single_value(
param=param, loaded_weight=loaded_weight, expert_id=expert_id
)
return
# Case model weights
if "weight" in weight_name:
self._load_model_weight_or_group_weight_scale(
shard_id=shard_id,
shard_dim=shard_dim,
loaded_weight=loaded_weight,
expert_data=expert_data,
tp_rank=tp_rank,
)
return
@staticmethod
def select_experts(
hidden_states: torch.Tensor,
router_logits: torch.Tensor,
top_k: int,
use_grouped_topk: bool,
renormalize: bool,
topk_group: Optional[int] = None,
num_expert_group: Optional[int] = None,
custom_routing_function: Optional[Callable] = None,
):
from vllm.model_executor.layers.fused_moe.fused_moe import (
fused_topk,
grouped_topk,
)
# DeekSeekv2 uses grouped_top_k
if use_grouped_topk:
assert topk_group is not None
assert num_expert_group is not None
topk_weights, topk_ids = grouped_topk(
hidden_states=hidden_states,
gating_output=router_logits,
topk=top_k,
renormalize=renormalize,
num_expert_group=num_expert_group,
topk_group=topk_group,
)
elif custom_routing_function is None:
topk_weights, topk_ids = fused_topk(
hidden_states=hidden_states,
gating_output=router_logits,
topk=top_k,
renormalize=renormalize,
)
else:
topk_weights, topk_ids = custom_routing_function(
hidden_states=hidden_states,
gating_output=router_logits,
topk=top_k,
renormalize=renormalize,
)
return topk_weights, topk_ids
def forward(self, hidden_states: torch.Tensor, router_logits: torch.Tensor):
assert self.quant_method is not None
# Matrix multiply.
final_hidden_states = self.quant_method.apply(
layer=self,
x=hidden_states,
router_logits=router_logits,
top_k=self.top_k,
renormalize=self.renormalize,
use_grouped_topk=self.use_grouped_topk,
topk_group=self.topk_group,
num_expert_group=self.num_expert_group,
custom_routing_function=self.custom_routing_function,
)
if self.reduce_results and self.tp_size > 1:
final_hidden_states = tensor_model_parallel_all_reduce(final_hidden_states)
return final_hidden_states
@classmethod
def make_expert_params_mapping(
cls,
ckpt_gate_proj_name: str,
ckpt_down_proj_name: str,
ckpt_up_proj_name: str,
num_experts: int,
) -> List[Tuple[str, str, int, str]]:
return [
# (param_name, weight_name, expert_id, shard_id)
(
(
"experts.w13_"
if weight_name in [ckpt_gate_proj_name, ckpt_up_proj_name]
else "experts.w2_"
),
f"experts.{expert_id}.{weight_name}.",
expert_id,
shard_id,
)
for expert_id in range(num_experts)
for shard_id, weight_name in [
("w1", ckpt_gate_proj_name),
("w2", ckpt_down_proj_name),
("w3", ckpt_up_proj_name),
]
]
def _load_fp8_scale(
self,
param: torch.nn.Parameter,
loaded_weight: torch.Tensor,
weight_name: str,
shard_id: str,
expert_id: int,
) -> None:
param_data = param.data
# Input scales can be loaded directly and should be equal.
if "input_scale" in weight_name:
if (
param_data[expert_id] != 1
and (param_data[expert_id] - loaded_weight).abs() > 1e-5
):
raise ValueError(
"input_scales of w1 and w3 of a layer "
f"must be equal. But got {param_data[expert_id]} "
f"vs. {loaded_weight}"
)
param_data[expert_id] = loaded_weight
# Weight scales
elif "weight_scale" in weight_name:
# If we are in merged column case (gate_up_proj)
if shard_id in ("w1", "w3"):
# We have to keep the weight scales of w1 and w3 because
# we need to re-quantize w1/w3 weights after weight loading.
idx = 0 if shard_id == "w1" else 1
param_data[expert_id][idx] = loaded_weight
# If we are in the row parallel case (down_proj)
else:
param_data[expert_id] = loaded_weight
...@@ -27,7 +27,6 @@ from vllm.distributed import ( ...@@ -27,7 +27,6 @@ from vllm.distributed import (
get_tp_group, get_tp_group,
tensor_model_parallel_all_reduce, tensor_model_parallel_all_reduce,
) )
from vllm.model_executor.layers.fused_moe import FusedMoE
from vllm.model_executor.layers.rotary_embedding import get_rope from vllm.model_executor.layers.rotary_embedding import get_rope
from vllm.model_executor.model_loader.weight_utils import default_weight_loader from vllm.model_executor.model_loader.weight_utils import default_weight_loader
...@@ -42,6 +41,7 @@ from sglang.srt.layers.linear import ( ...@@ -42,6 +41,7 @@ from sglang.srt.layers.linear import (
from sglang.srt.layers.logits_processor import LogitsProcessor from sglang.srt.layers.logits_processor import LogitsProcessor
from sglang.srt.layers.quantization.base_config import QuantizationConfig from sglang.srt.layers.quantization.base_config import QuantizationConfig
from sglang.srt.layers.radix_attention import RadixAttention from sglang.srt.layers.radix_attention import RadixAttention
from sglang.srt.layers.triton_fused_moe import FusedMoE
from sglang.srt.layers.vocab_parallel_embedding import ( from sglang.srt.layers.vocab_parallel_embedding import (
ParallelLMHead, ParallelLMHead,
VocabParallelEmbedding, VocabParallelEmbedding,
......
...@@ -31,7 +31,7 @@ import time ...@@ -31,7 +31,7 @@ import time
import warnings import warnings
from importlib.metadata import PackageNotFoundError, version from importlib.metadata import PackageNotFoundError, version
from io import BytesIO from io import BytesIO
from typing import Any, Dict, List, Optional, Protocol, Tuple, Union from typing import Any, Callable, Dict, List, Optional, Protocol, Tuple, Union
import numpy as np import numpy as np
import psutil import psutil
...@@ -45,6 +45,7 @@ from packaging import version as pkg_version ...@@ -45,6 +45,7 @@ from packaging import version as pkg_version
from starlette.routing import Mount from starlette.routing import Mount
from torch import nn from torch import nn
from torch.func import functional_call from torch.func import functional_call
from torch.library import Library
from torch.profiler import ProfilerActivity, profile, record_function from torch.profiler import ProfilerActivity, profile, record_function
from triton.runtime.cache import ( from triton.runtime.cache import (
FileCacheManager, FileCacheManager,
...@@ -930,3 +931,44 @@ def get_nvgpu_memory_capacity(): ...@@ -930,3 +931,44 @@ def get_nvgpu_memory_capacity():
def crash_on_warnings(): def crash_on_warnings():
# Crash on warning if we are running CI tests # Crash on warning if we are running CI tests
return os.getenv("SGLANG_IS_IN_CI", "false") == "true" return os.getenv("SGLANG_IS_IN_CI", "false") == "true"
def get_device_name(device_id: int = 0) -> str:
if hasattr(torch, "cuda") and torch.cuda.is_available():
return torch.cuda.get_device_name(device_id)
if hasattr(torch, "hip") and torch.hip.is_available():
return torch.hip.get_device_name(device_id)
if hasattr(torch, "xpu") and torch.xpu.is_available():
return torch.xpu.get_device_name(device_id)
if hasattr(torch, "hpu") and torch.hpu.is_available():
return torch.hpu.get_device_name(device_id)
sglang_lib = Library("sglang", "FRAGMENT") # noqa
def direct_register_custom_op(
op_name: str,
op_func: Callable,
mutates_args: List[str],
fake_impl: Optional[Callable] = None,
target_lib: Optional[Library] = None,
):
import torch.library
if hasattr(torch.library, "infer_schema"):
schema_str = torch.library.infer_schema(op_func, mutates_args=mutates_args)
else:
# for pytorch 2.4
import torch._custom_op.impl
schema_str = torch._custom_op.impl.infer_schema(op_func, mutates_args)
my_lib = target_lib or sglang_lib
my_lib.define(op_name + schema_str)
my_lib.impl(op_name, op_func, "CUDA")
if fake_impl is not None:
my_lib._register_fake(op_name, fake_impl)
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment