Unverified Commit a027a9b4 authored by Sundara Raman Ramachandran's avatar Sundara Raman Ramachandran Committed by GitHub
Browse files

[Generative Score API] Optimization to Remove Decode. (#8840)

parent 9e426466
"""
SGLang Scoring Benchmark Script
This script benchmarks SGLang's scoring API performance using HTTP requests.
Current Features:
- HTTP-only implementation (open source compatible)
- Uses /v1/score API endpoint directly
- Single item scoring with batching support
- Configurable RPS, duration, and batch sizes
- Progress tracking and detailed metrics
- Poisson and constant request distributions
Usage:
- Update configuration variables at the top of the file
- Ensure SGLang server is running on the configured HTTP_URL
- Run: python bench_score.py
- Each request will contain ITEM_COUNT_VALUES items for batch scoring
"""
import asyncio
import concurrent.futures # For parallel prompt generation
import json
import os
import random
from statistics import mean
import aiohttp
import numpy as np
from tqdm import tqdm
from transformers import AutoTokenizer
###############################################################################
# CONFIG
###############################################################################
# Server Configuration
SERVER_TYPE = "HTTP" # Fixed to HTTP for open source
# HTTP Configuration
HTTP_URL = "http://localhost:30000/v1/score" # Use score API directly
# Score API Config
# ITEM_COUNT_VALUES determines number of items per score request (batch size)
SCORE_QUERY_TOKENS = 120
SCORE_ITEM_TOKENS = 180
SCORE_MODEL_PATH = "Qwen/Qwen3-0.6B"
SCORE_LABEL_TOKEN_IDS = [9454, 2753] # Yes/No token IDs
# Array of RPS values to test
RPS_VALUES = [70]
# Array of duration values to test
DURATION_SECS_VALUES = [60] # Duration values in seconds
# Array of item count values to test
ITEM_COUNT_VALUES = [10] # Number of items per request
# Number of unique requests to generate (will be reused)
NUM_UNIQUE_REQUESTS = 100
DISTRIBUTION = "POISSON" # Options: "CONSTANT", "POISSON"
# Profiling Configuration
PROFILE = False # Enable profiling with START_PROFILE/STOP_PROFILE prompts
# Directory for profiler output
SGLANG_TORCH_PROFILER_DIR = "/shared/user/sglang-oss-trace/remove-decode"
if PROFILE:
os.environ["SGLANG_TORCH_PROFILER_DIR"] = SGLANG_TORCH_PROFILER_DIR
# Special token to replicate for precise token counting
SPECIAL_REPLICATED_TOKEN = "<|im_start|>"
###############################################################################
# REQUEST GENERATION (in parallel)
###############################################################################
def prepare_all_requests_parallel(num_requests, item_count):
"""
Generates unique requests in parallel, then reuses them to create the
full request list. Returns a list of str prompts for HTTP.
"""
# Load tokenizer once here to verify special token and get precise counts
print("Loading tokenizer...")
tokenizer = AutoTokenizer.from_pretrained(SCORE_MODEL_PATH)
# Verify that our special token produces exactly 1 token
special_token_count = len(
tokenizer.encode(SPECIAL_REPLICATED_TOKEN, add_special_tokens=False)
)
print(
f"Special token '{SPECIAL_REPLICATED_TOKEN}' produces "
f"{special_token_count} token(s)"
)
def generate_text_with_token_count(num_toks):
"""Generate text with precise token count using replicated token."""
if special_token_count == 1:
# Simple case: token maps to exactly 1 token
return SPECIAL_REPLICATED_TOKEN * num_toks
else:
print(
f"Special token '{SPECIAL_REPLICATED_TOKEN}' produces more than 1 token!!!"
)
# Handle case where special token produces multiple tokens
# Repeat the token enough times to get at least num_toks tokens
repetitions = (num_toks + special_token_count - 1) // special_token_count
text = SPECIAL_REPLICATED_TOKEN * repetitions
# Verify we got the expected token count (approximately)
actual_tokens = len(tokenizer.encode(text, add_special_tokens=False))
if actual_tokens < num_toks:
print(
f"Warning: Generated {actual_tokens} tokens, "
f"expected {num_toks}"
)
return text
def build_request(index):
"""Build a single request using the shared tokenizer."""
try:
# Generate query and items for score API
query = generate_text_with_token_count(SCORE_QUERY_TOKENS)
items = [
generate_text_with_token_count(SCORE_ITEM_TOKENS)
for _ in range(item_count)
]
# Return as dict for score API format
score_data = {
"query": query,
"items": items,
"label_token_ids": SCORE_LABEL_TOKEN_IDS,
"model": SCORE_MODEL_PATH,
}
return (index, score_data)
except Exception as e:
print(f"Error building request {index}: {e}")
return (index, None)
# Generate only the unique requests
unique_requests = [None] * NUM_UNIQUE_REQUESTS
# Use ThreadPoolExecutor instead of ProcessPoolExecutor to avoid
# tokenizer loading issues across processes
max_workers = min(8, os.cpu_count() or 1) # Limit to 8 threads max
with concurrent.futures.ThreadPoolExecutor(max_workers=max_workers) as executor:
futures = []
for i in tqdm(
range(NUM_UNIQUE_REQUESTS), desc="Submitting prompt generation tasks"
):
future = executor.submit(build_request, i)
futures.append(future)
# Collect results as they complete
for f in tqdm(
concurrent.futures.as_completed(futures),
desc="Building unique requests",
total=NUM_UNIQUE_REQUESTS,
):
try:
index, req_data = f.result()
if req_data is not None:
unique_requests[index] = req_data
else:
print(f"Failed to build request {index}")
except Exception as e:
print(f"Error processing request result: {e}")
# Check if we have any valid requests
valid_requests = [req for req in unique_requests if req is not None]
if not valid_requests:
raise RuntimeError("Failed to generate any valid requests")
print(
f"Successfully generated {len(valid_requests)} out of "
f"{NUM_UNIQUE_REQUESTS} unique requests"
)
# Create the full request list by cycling through unique requests
print(
f"Reusing {len(valid_requests)} unique requests to create "
f"{num_requests} total requests..."
)
all_requests = []
for i in tqdm(range(num_requests), desc="Reusing requests"):
unique_index = i % len(valid_requests)
all_requests.append(valid_requests[unique_index])
print("All prompts/requests prepared.\n")
return all_requests
###############################################################################
# PROFILING HELPERS
###############################################################################
async def send_profile_request(profile_text, item_count, session=None):
"""Send a profile request and wait for completion."""
try:
if session:
print(f"Sending {profile_text} request via HTTP...")
# Determine the correct endpoint
base_url = HTTP_URL.rsplit("/", 2)[0] # Remove /v1/score
if profile_text == "START_PROFILE":
endpoint_url = f"{base_url}/start_profile"
elif profile_text == "STOP_PROFILE":
endpoint_url = f"{base_url}/stop_profile"
else:
print(f"Unknown profile request: {profile_text}")
return
headers = {"Content-Type": "application/json"}
async with session.post(endpoint_url, headers=headers) as resp:
resp_text = await resp.text()
if resp.status == 200:
print(f"{profile_text} request completed")
else:
print(
f"{profile_text} request failed with status "
f"{resp.status}: {resp_text}"
)
else:
print(f"Cannot send {profile_text} request - missing session")
except Exception as e:
print(f"Error sending {profile_text} request: {e}")
###############################################################################
# HTTP CALLS
###############################################################################
def build_http_request_json(score_data):
"""Build HTTP request JSON for /v1/score endpoint.
Score API format:
{
"query": "Generated query text with SCORE_QUERY_TOKENS tokens",
"items": ["item1", "item2", ...], # Items to score with SCORE_ITEM_TOKENS each
"label_token_ids": [token_id1, token_id2], # Target token IDs
"model": "/path/to/model"
}
Args:
score_data: A dict containing query, items, label_token_ids, and model
"""
# score_data is already in the correct format from build_request
return json.dumps(score_data)
async def make_http_call(session, score_data, request_id, results_queue):
"""HTTP call to /v1/score endpoint."""
try:
start_time = asyncio.get_event_loop().time()
request_json = build_http_request_json(score_data)
headers = {"Content-Type": "application/json"}
async with session.post(HTTP_URL, data=request_json, headers=headers) as resp:
resp_text = await resp.text()
if resp.status != 200:
print(
f"[HTTP] Request {request_id} failed with status "
f"{resp.status}: {resp_text}"
)
completion_time = asyncio.get_event_loop().time()
await results_queue.put((request_id, 0, False, completion_time))
return
# Parse score API response
try:
response_data = json.loads(resp_text)
# Score API returns scores for each item
# For now, just verify we got a valid response
if "scores" in response_data or "logprobs" in response_data:
success = True
else:
print(
f"[HTTP] Request {request_id} missing expected fields in response"
)
success = False
except json.JSONDecodeError:
print(f"[HTTP] Request {request_id} failed to parse JSON response")
success = False
completion_time = asyncio.get_event_loop().time()
elapsed_time = (completion_time - start_time) * 1000
await results_queue.put((request_id, elapsed_time, success, completion_time))
except Exception as e:
print(f"[HTTP] Error for request {request_id}: {e}")
completion_time = asyncio.get_event_loop().time()
await results_queue.put((request_id, 0, False, completion_time))
###############################################################################
# RESULTS
###############################################################################
async def process_results(
results_queue,
num_requests,
send_duration,
total_duration,
rps,
duration_secs,
item_count,
test_start_time,
):
"""Processes results and groups them by minute intervals.
Returns a list of dictionaries, one for each minute."""
all_results = []
# Collect all results
for _ in range(num_requests):
result = await results_queue.get()
request_id, elapsed_time, success, completion_time = result
all_results.append(
{
"request_id": request_id,
"elapsed_time": elapsed_time,
"success": success,
"completion_time": completion_time,
}
)
# Group results by minute intervals
minute_results = []
num_minutes = int(duration_secs // 60) + (1 if duration_secs % 60 > 0 else 0)
for minute in range(num_minutes):
minute_start = test_start_time + (minute * 60)
minute_end = test_start_time + ((minute + 1) * 60)
# Filter results that completed in this minute
minute_data = [
r for r in all_results if minute_start <= r["completion_time"] < minute_end
]
response_times = [r["elapsed_time"] for r in minute_data if r["success"]]
successful_requests = len([r for r in minute_data if r["success"]])
failed_requests = len([r for r in minute_data if not r["success"]])
avg_response_time = mean(response_times) if response_times else 0
# Calculate percentiles using numpy
if response_times:
p50 = np.percentile(response_times, 50)
p90 = np.percentile(response_times, 90)
p99 = np.percentile(response_times, 99)
else:
p50 = p90 = p99 = 0
minute_result = {
"test_duration_secs": duration_secs,
"minute_interval": minute + 1,
"target_rps": rps,
"item_count": item_count,
"server_type": SERVER_TYPE,
"distribution": DISTRIBUTION,
"unique_requests": NUM_UNIQUE_REQUESTS,
"total_requests": len(minute_data),
"successful_requests": successful_requests,
"failed_requests": failed_requests,
"send_duration_secs": send_duration,
"total_duration_secs": total_duration,
"avg_response_time_ms": avg_response_time,
"p50_response_time_ms": p50,
"p90_response_time_ms": p90,
"p99_response_time_ms": p99,
}
minute_results.append(minute_result)
print(
f"\nMinute {minute + 1} Summary for RPS {rps}, "
f"Duration {duration_secs}s, Item Count {item_count}:"
)
print(f" Requests completed in minute: {len(minute_data)}")
print(f" Successful requests: {successful_requests}")
print(f" Failed requests: {failed_requests}")
print(f" Average response time: {avg_response_time:.2f} ms")
print(f" P50 response time: {p50:.2f} ms")
print(f" P90 response time: {p90:.2f} ms")
print(f" P99 response time: {p99:.2f} ms")
# Also print overall summary
all_response_times = [r["elapsed_time"] for r in all_results if r["success"]]
total_successful = len([r for r in all_results if r["success"]])
total_failed = len([r for r in all_results if not r["success"]])
overall_avg = mean(all_response_times) if all_response_times else 0
if all_response_times:
overall_p50 = np.percentile(all_response_times, 50)
overall_p90 = np.percentile(all_response_times, 90)
overall_p99 = np.percentile(all_response_times, 99)
else:
overall_p50 = overall_p90 = overall_p99 = 0
print(
f"\nOverall Summary for RPS {rps}, Duration {duration_secs}s, "
f"Item Count {item_count}:"
)
print(f" Test duration: {duration_secs} seconds")
print(f" Server type: {SERVER_TYPE}")
print(f" HTTP mode: SINGLE_ITEM_SCORING")
print(f" Target RPS: {rps}")
print(f" Item count: {item_count}")
print(f" Distribution: {DISTRIBUTION}")
print(f" Unique requests generated: {NUM_UNIQUE_REQUESTS}")
print(f" Total requests sent: {num_requests}")
print(f" Successful requests: {total_successful}")
print(f" Failed requests: {total_failed}")
print(f" Time to send all requests: {send_duration:.2f} seconds")
print(f" Time for all requests to complete: {total_duration:.2f} seconds")
print(f" Average response time: {overall_avg:.2f} ms")
print(f" P50 response time: {overall_p50:.2f} ms")
print(f" P90 response time: {overall_p90:.2f} ms")
print(f" P99 response time: {overall_p99:.2f} ms\n")
return minute_results
###############################################################################
# MAIN
###############################################################################
async def run_benchmark(rps, duration_secs, item_count):
"""Run a single benchmark with the given RPS value."""
num_requests = int(rps * duration_secs)
print(
f"Starting benchmark with RPS={rps}, Duration={duration_secs}s, "
f"Item Count={item_count}, num_requests={num_requests}"
)
print(f"Server Type: {SERVER_TYPE}")
print(f"HTTP Mode: SINGLE_ITEM_SCORING")
print(f"Profiling Enabled: {PROFILE}")
# Build requests in parallel (unmeasured)
all_requests = prepare_all_requests_parallel(num_requests, item_count)
results_queue = asyncio.Queue()
tasks = []
# Track timing for sending requests
send_start_time = asyncio.get_event_loop().time()
# HTTP implementation (open source only supports HTTP with /v1/score API)
async with aiohttp.ClientSession(
timeout=aiohttp.ClientTimeout(total=300)
) as session:
# Send START_PROFILE if profiling is enabled
if PROFILE:
await send_profile_request("START_PROFILE", item_count, session=session)
# Add progress bar for sending requests
with tqdm(
total=len(all_requests),
desc=f"Sending HTTP score requests at {rps} RPS",
unit="req",
) as pbar:
for i, score_data in enumerate(all_requests):
request_id = i + 1
tasks.append(
asyncio.create_task(
make_http_call(session, score_data, request_id, results_queue)
)
)
# Update progress bar
pbar.update(1)
# Throttle based on distribution
if i < len(all_requests) - 1:
if DISTRIBUTION == "CONSTANT":
interval = 1 / rps
await asyncio.sleep(interval)
elif DISTRIBUTION == "POISSON":
# For Poisson process, inter-arrival times follow
# exponential distribution
interval = random.expovariate(rps)
await asyncio.sleep(interval)
else:
raise ValueError(
f"Unknown distribution: {DISTRIBUTION}. "
f"Use 'CONSTANT' or 'POISSON'."
)
send_end_time = asyncio.get_event_loop().time()
send_duration = send_end_time - send_start_time
# Wait for all requests to complete with progress tracking
print(f"Waiting for {len(tasks)} HTTP score requests to complete...")
with tqdm(
total=len(tasks), desc="Completing HTTP score requests", unit="req"
) as completion_pbar:
completed_tasks = []
for task in asyncio.as_completed(tasks):
await task
completed_tasks.append(task)
completion_pbar.update(1)
# Send STOP_PROFILE if profiling is enabled
if PROFILE:
await send_profile_request("STOP_PROFILE", item_count, session=session)
completion_end_time = asyncio.get_event_loop().time()
total_duration = completion_end_time - send_start_time
return await process_results(
results_queue,
num_requests,
send_duration,
total_duration,
rps,
duration_secs,
item_count,
send_start_time,
)
async def main():
"""Main function that runs benchmarks for all RPS values."""
total_combinations = (
len(DURATION_SECS_VALUES) * len(RPS_VALUES) * len(ITEM_COUNT_VALUES)
)
print(
f"Running benchmarks for {len(DURATION_SECS_VALUES)} duration "
f"values, {len(RPS_VALUES)} RPS values, and "
f"{len(ITEM_COUNT_VALUES)} item count values = "
f"{total_combinations} total combinations"
)
print(f"Server Type: {SERVER_TYPE}")
print(f"HTTP Mode: SINGLE_ITEM_SCORING")
print(f"Score API URL: {HTTP_URL}")
print(f"Query tokens per request: {SCORE_QUERY_TOKENS}")
print(f"Item tokens per item: {SCORE_ITEM_TOKENS}")
print(f"Items per request (batch size): {ITEM_COUNT_VALUES}")
print(f"Profiling Enabled: {PROFILE}")
print(f"Duration values: {DURATION_SECS_VALUES}")
print(f"RPS values: {RPS_VALUES}")
print(f"Item count values: {ITEM_COUNT_VALUES}")
print("=" * 80)
all_results = []
for duration_secs in DURATION_SECS_VALUES:
for rps in RPS_VALUES:
for item_count in ITEM_COUNT_VALUES:
result = await run_benchmark(rps, duration_secs, item_count)
all_results.extend(result) # Extend with minute results
# Print CSV header and results
print("\n" + "=" * 80)
print("FINAL CSV RESULTS:")
print("=" * 80)
# CSV Header
headers = [
"test_duration_secs",
"minute_interval",
"target_rps",
"item_count",
"server_type",
"distribution",
"unique_requests",
"total_requests",
"successful_requests",
"failed_requests",
"send_duration_secs",
"total_duration_secs",
"avg_response_time_ms",
"p50_response_time_ms",
"p90_response_time_ms",
"p99_response_time_ms",
]
print(",".join(headers))
# CSV Data
for result in all_results:
row = [
result["test_duration_secs"],
result["minute_interval"],
result["target_rps"],
result["item_count"],
result["server_type"],
result["distribution"],
result["unique_requests"],
result["total_requests"],
result["successful_requests"],
result["failed_requests"],
f"{result['send_duration_secs']:.2f}",
f"{result['total_duration_secs']:.2f}",
f"{result['avg_response_time_ms']:.2f}",
f"{result['p50_response_time_ms']:.2f}",
f"{result['p90_response_time_ms']:.2f}",
f"{result['p99_response_time_ms']:.2f}",
]
print(",".join(map(str, row)))
if __name__ == "__main__":
asyncio.run(main())
......@@ -913,6 +913,9 @@ class ScheduleBatch(ScheduleBatchDisaggregationDecodeMixin):
# Whether to return hidden states
return_hidden_states: bool = False
# Whether this batch is prefill-only (no token generation needed)
is_prefill_only: bool = False
# hicache pointer for synchronizing data loading from CPU to GPU
hicache_consumer_index: int = 0
......@@ -953,6 +956,9 @@ class ScheduleBatch(ScheduleBatchDisaggregationDecodeMixin):
device=req_to_token_pool.device,
spec_algorithm=spec_algorithm,
return_hidden_states=any(req.return_hidden_states for req in reqs),
is_prefill_only=all(
req.sampling_params.max_new_tokens == 0 for req in reqs
),
chunked_req=chunked_req,
)
......@@ -1796,6 +1802,7 @@ class ScheduleBatch(ScheduleBatchDisaggregationDecodeMixin):
global_num_tokens_for_logprob=self.global_num_tokens_for_logprob,
can_run_dp_cuda_graph=self.can_run_dp_cuda_graph,
is_extend_in_batch=self.is_extend_in_batch,
is_prefill_only=self.is_prefill_only,
)
def _evict_tree_cache_if_needed(self, num_tokens: int):
......
......@@ -1466,8 +1466,9 @@ class Scheduler(
if self.last_batch.batch_size() < last_bs:
self.running_batch.batch_is_full = False
# Merge the new batch into the running batch
if not self.last_batch.is_empty():
# Merge the new batch into the running batch.
# For prefill-only batch, we can avoid going through decoding step.
if not self.last_batch.is_empty() and not self.last_batch.is_prefill_only:
if self.running_batch.is_empty():
self.running_batch = self.last_batch
else:
......
......@@ -699,7 +699,7 @@ class TokenizerManager:
# Process all requests
tokenized_objs = []
for i, req in enumerate(requests):
self._validate_token_len(obj[i], input_ids_list[i])
self._validate_one_request(obj[i], input_ids_list[i])
tokenized_objs.append(
self._create_tokenized_object(
req, req.text, input_ids_list[i], None, None
......@@ -1892,6 +1892,13 @@ class TokenizerManager:
f"Token ID {token_id} is out of vocabulary (vocab size: {vocab_size})"
)
batch_request = GenerateReqInput(
token_ids_logprob=label_token_ids,
return_logprob=True,
stream=False,
sampling_params={"max_new_tokens": 0},
)
# Handle string or tokenized query/items
if isinstance(query, str) and (
isinstance(items, str)
......@@ -1903,13 +1910,9 @@ class TokenizerManager:
prompts = [f"{item}{query}" for item in items_list]
else:
prompts = [f"{query}{item}" for item in items_list]
batch_request = GenerateReqInput(
text=prompts,
return_logprob=True,
token_ids_logprob=label_token_ids,
stream=False,
sampling_params={"max_new_tokens": 1},
)
batch_request.text = prompts
elif (
isinstance(query, list)
and isinstance(items, list)
......@@ -1921,13 +1924,8 @@ class TokenizerManager:
input_ids_list = [item + query for item in items]
else:
input_ids_list = [query + item for item in items]
batch_request = GenerateReqInput(
input_ids=input_ids_list,
return_logprob=True,
token_ids_logprob=label_token_ids,
stream=False,
sampling_params={"max_new_tokens": 1},
)
batch_request.input_ids = input_ids_list
else:
raise ValueError(
"Invalid combination of query/items types for score_request."
......@@ -1939,9 +1937,20 @@ class TokenizerManager:
for result in results:
# Get logprobs for each token
logprobs = {}
for logprob, token_id, _ in result["meta_info"].get(
"output_token_ids_logprobs", []
)[0]:
# For scoring requests, we read from output_token_ids_logprobs since we want
# the logprobs for specific tokens mentioned in the label_token_ids at
# the next position after the last token in the prompt
output_logprobs = result["meta_info"].get("output_token_ids_logprobs", [])
# Throw an error here if output_logprobs is None
if output_logprobs is None:
raise RuntimeError(
f"output_logprobs is None for request {result['meta_info'].get('id', '<unknown>')}. "
"This usually indicates a problem with the scoring request or the backend output."
)
for logprob, token_id, _ in output_logprobs[0]:
if token_id in label_token_ids:
logprobs[token_id] = logprob
......
......@@ -213,6 +213,88 @@ class TestScoreAPI(CustomTestCase):
1.0, sum(score_list), 6, "Scores should sum to 1"
)
def test_score_request_construction(self):
"""Test that scoring requests are constructed to avoid decode phase."""
from unittest.mock import patch
# Capture the internal request to verify optimization
captured_requests = []
original_gen = self.engine.tokenizer_manager.generate_request
async def mock_generate_request(req, request=None):
captured_requests.append(req)
async for result in original_gen(req, request):
yield result
# Patch the generate_request method
with patch.object(
self.engine.tokenizer_manager,
"generate_request",
side_effect=mock_generate_request,
):
# Run a scoring request
query = "What is the capital of"
items = ["France", "Germany"]
label_token_ids = [1, 2, 3]
scores = self.engine.score(
query=query,
items=items,
label_token_ids=label_token_ids,
apply_softmax=True,
)
# Verify we got results
self.assertEqual(len(scores), len(items))
# Verify the captured request has decode-avoiding properties
self.assertEqual(len(captured_requests), 1)
request = captured_requests[0]
# Key assertions for decode phase avoidance:
# 1. max_new_tokens should be 0 (prevents token generation)
# Handle both single and batch request cases
if isinstance(request.sampling_params, dict):
max_new_tokens = request.sampling_params.get("max_new_tokens", 0)
elif isinstance(request.sampling_params, list):
# For batch requests, check the first item
max_new_tokens = request.sampling_params[0].get("max_new_tokens", 0)
else:
max_new_tokens = getattr(request.sampling_params, "max_new_tokens", 0)
self.assertEqual(
max_new_tokens, 0, "max_new_tokens should be 0 to avoid decode phase"
)
# 2. Should have token_ids_logprob for scoring
# Handle both single and batch request cases
if (
isinstance(request.token_ids_logprob, list)
and len(request.token_ids_logprob) > 0
and isinstance(request.token_ids_logprob[0], list)
):
# Batch case: token_ids_logprob is a list of lists
# Each item in the batch should have the same label_token_ids
for item_token_ids in request.token_ids_logprob:
self.assertEqual(
item_token_ids,
label_token_ids,
"Each batch item should have label_token_ids for scoring",
)
else:
# Single request case
self.assertEqual(
request.token_ids_logprob,
label_token_ids,
"Should have label_token_ids for scoring",
)
# 3. Should request logprobs but not stream
self.assertTrue(
request.return_logprob, "Should request logprobs for scoring"
)
self.assertFalse(request.stream, "Scoring requests should not stream")
if __name__ == "__main__":
unittest.main()
"""
Unit tests for enable_tokenizer_batch_encode feature.
This tests the batch tokenization functionality which allows processing
multiple text inputs in a single batch for improved performance.
Usage:
python3 -m unittest test_tokenizer_batch_encode.TestTokenizerBatchEncode.test_batch_validation_constraints
python3 -m unittest test_tokenizer_batch_encode.TestTokenizerBatchEncodeUnit.test_batch_tokenize_and_process_logic
python3 -m unittest test_tokenizer_batch_encode.TestTokenizerBatchEncodeLogic.test_batch_processing_path
"""
import asyncio
import unittest
from typing import List
from unittest.mock import AsyncMock, Mock, call, patch
from sglang.srt.managers.io_struct import GenerateReqInput, TokenizedGenerateReqInput
from sglang.srt.managers.tokenizer_manager import TokenizerManager
from sglang.srt.server_args import PortArgs, ServerArgs
from sglang.test.test_utils import DEFAULT_SMALL_MODEL_NAME_FOR_TEST
class TestTokenizerBatchEncode(unittest.TestCase):
"""Test cases for tokenizer batch encoding validation and setup."""
def setUp(self):
"""Set up test fixtures."""
self.server_args = ServerArgs(
model_path=DEFAULT_SMALL_MODEL_NAME_FOR_TEST,
enable_tokenizer_batch_encode=True,
)
self.port_args = PortArgs.init_new(self.server_args)
with patch("zmq.asyncio.Context"), patch(
"sglang.srt.utils.get_zmq_socket"
), patch("sglang.srt.hf_transformers_utils.get_tokenizer") as mock_tokenizer:
mock_tokenizer.return_value = Mock(vocab_size=32000)
self.tokenizer_manager = TokenizerManager(self.server_args, self.port_args)
def test_batch_encode_enabled(self):
"""Test that batch encoding is enabled when configured."""
self.assertTrue(self.server_args.enable_tokenizer_batch_encode)
def test_batch_encode_disabled(self):
"""Test that batch encoding can be disabled."""
server_args_disabled = ServerArgs(
model_path=DEFAULT_SMALL_MODEL_NAME_FOR_TEST,
enable_tokenizer_batch_encode=False,
)
self.assertFalse(server_args_disabled.enable_tokenizer_batch_encode)
def test_multimodal_input_validation(self):
"""Test that multimodal inputs are rejected in batch mode."""
req = GenerateReqInput(text="test", image_data=["dummy"])
req.contains_mm_input = Mock(return_value=True)
batch_obj = Mock()
batch_obj.__getitem__ = lambda self, i: req
self.tokenizer_manager.is_generation = True
with self.assertRaises(ValueError) as cm:
self.tokenizer_manager._validate_batch_tokenization_constraints(
1, batch_obj
)
self.assertIn("multimodal", str(cm.exception))
def test_pretokenized_input_validation(self):
"""Test that pre-tokenized inputs are rejected in batch mode."""
req = GenerateReqInput(input_ids=[1, 2, 3])
batch_obj = Mock()
batch_obj.__getitem__ = lambda self, i: req
with self.assertRaises(ValueError) as cm:
self.tokenizer_manager._validate_batch_tokenization_constraints(
1, batch_obj
)
self.assertIn("pre-tokenized", str(cm.exception))
def test_input_embeds_validation(self):
"""Test that input embeds are rejected in batch mode."""
req = GenerateReqInput(input_embeds=[0.1, 0.2])
batch_obj = Mock()
batch_obj.__getitem__ = lambda self, i: req
with self.assertRaises(ValueError) as cm:
self.tokenizer_manager._validate_batch_tokenization_constraints(
1, batch_obj
)
self.assertIn("input_embeds", str(cm.exception))
def test_valid_text_only_requests_pass_validation(self):
"""Test that valid text-only requests pass validation."""
# Create valid requests (text-only)
requests = []
for i in range(3):
req = GenerateReqInput(text=f"test text {i}")
req.contains_mm_input = Mock(return_value=False)
requests.append(req)
batch_obj = Mock()
batch_obj.__getitem__ = Mock(side_effect=lambda i: requests[i])
# Should not raise any exception
try:
self.tokenizer_manager._validate_batch_tokenization_constraints(
3, batch_obj
)
except Exception as e:
self.fail(f"Validation failed for valid text-only requests: {e}")
if __name__ == "__main__":
unittest.main(verbosity=2)
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment