Unverified Commit 86527a47 authored by Stefan He's avatar Stefan He Committed by GitHub
Browse files

[deterministic inference] Move batch invariant pkg to sglang (#10695)

parent 134b4f7e
# Adapted from https://github.com/thinking-machines-lab/batch_invariant_ops/blob/main/batch_invariant_ops/__init__.py
from .batch_invariant_ops import (
AttentionBlockSize,
disable_batch_invariant_mode,
enable_batch_invariant_mode,
get_batch_invariant_attention_block_size,
is_batch_invariant_mode_enabled,
log_softmax,
matmul_persistent,
mean_dim,
set_batch_invariant_mode,
)
__version__ = "0.1.0"
__all__ = [
"set_batch_invariant_mode",
"is_batch_invariant_mode_enabled",
"disable_batch_invariant_mode",
"enable_batch_invariant_mode",
"matmul_persistent",
"log_softmax",
"mean_dim",
"get_batch_invariant_attention_block_size",
"AttentionBlockSize",
]
# Adapted from https://github.com/thinking-machines-lab/batch_invariant_ops/blob/main/batch_invariant_ops/batch_invariant_ops.py
import contextlib
from collections import namedtuple
from collections.abc import Callable
from typing import Any, Dict
import torch
import triton
import triton.language as tl
__all__ = [
"set_batch_invariant_mode",
"is_batch_invariant_mode_enabled",
"disable_batch_invariant_mode",
"enable_batch_invariant_mode",
]
def _matmul_launch_metadata(
grid: Callable[..., Any], kernel: Any, args: Dict[str, Any]
) -> Dict[str, Any]:
ret = {}
m, n, k = args["M"], args["N"], args["K"]
ret["name"] = f"{kernel.name} [M={m}, N={n}, K={k}]"
if "tiles_per_update" in args:
ret["name"] = (
f"{kernel.name} [M={m}, N={n}, K={k}, tiles_per_update={args['tiles_per_update']:02}]"
)
if "c_ptr" in args:
bytes_per_elem = args["c_ptr"].element_size()
else:
bytes_per_elem = 1 if args["FP8_OUTPUT"] else 2
ret[f"flops{bytes_per_elem * 8}"] = 2.0 * m * n * k
ret["bytes"] = bytes_per_elem * (m * k + n * k + m * n)
return ret
@triton.jit
def _compute_pid(tile_id, num_pid_in_group, num_pid_m, GROUP_SIZE_M, NUM_SMS):
group_id = tile_id // num_pid_in_group
first_pid_m = group_id * GROUP_SIZE_M
group_size_m = min(num_pid_m - first_pid_m, GROUP_SIZE_M)
pid_m = first_pid_m + (tile_id % group_size_m)
pid_n = (tile_id % num_pid_in_group) // group_size_m
return pid_m, pid_n
@triton.jit(launch_metadata=_matmul_launch_metadata)
def matmul_kernel_persistent(
a_ptr,
b_ptr,
c_ptr, #
bias_ptr,
M,
N,
K, #
stride_am,
stride_ak,
stride_bk,
stride_bn,
stride_cm,
stride_cn,
BLOCK_SIZE_M: tl.constexpr, #
BLOCK_SIZE_N: tl.constexpr, #
BLOCK_SIZE_K: tl.constexpr, #
GROUP_SIZE_M: tl.constexpr, #
NUM_SMS: tl.constexpr, #
A_LARGE: tl.constexpr,
B_LARGE: tl.constexpr,
C_LARGE: tl.constexpr,
HAS_BIAS: tl.constexpr,
):
start_pid = tl.program_id(axis=0)
num_pid_m = tl.cdiv(M, BLOCK_SIZE_M)
num_pid_n = tl.cdiv(N, BLOCK_SIZE_N)
k_tiles = tl.cdiv(K, BLOCK_SIZE_K)
num_tiles = num_pid_m * num_pid_n
tile_id_c = start_pid - NUM_SMS
offs_k_for_mask = tl.arange(0, BLOCK_SIZE_K)
num_pid_in_group = GROUP_SIZE_M * num_pid_n
for tile_id in tl.range(start_pid, num_tiles, NUM_SMS, flatten=True):
pid_m, pid_n = _compute_pid(
tile_id, num_pid_in_group, num_pid_m, GROUP_SIZE_M, NUM_SMS
)
start_m = pid_m * BLOCK_SIZE_M
start_n = pid_n * BLOCK_SIZE_N
offs_am = start_m + tl.arange(0, BLOCK_SIZE_M)
offs_bn = start_n + tl.arange(0, BLOCK_SIZE_N)
if A_LARGE:
offs_am = offs_am.to(tl.int64)
if B_LARGE:
offs_bn = offs_bn.to(tl.int64)
offs_am = tl.where(offs_am < M, offs_am, 0)
offs_bn = tl.where(offs_bn < N, offs_bn, 0)
offs_am = tl.max_contiguous(tl.multiple_of(offs_am, BLOCK_SIZE_M), BLOCK_SIZE_M)
offs_bn = tl.max_contiguous(tl.multiple_of(offs_bn, BLOCK_SIZE_N), BLOCK_SIZE_N)
accumulator = tl.zeros((BLOCK_SIZE_M, BLOCK_SIZE_N), dtype=tl.float32)
for ki in range(k_tiles):
if A_LARGE or B_LARGE:
offs_k = ki * BLOCK_SIZE_K + tl.arange(0, BLOCK_SIZE_K).to(tl.int64)
else:
offs_k = ki * BLOCK_SIZE_K + tl.arange(0, BLOCK_SIZE_K)
a_ptrs = a_ptr + (
offs_am[:, None] * stride_am + offs_k[None, :] * stride_ak
)
b_ptrs = b_ptr + (
offs_k[:, None] * stride_bk + offs_bn[None, :] * stride_bn
)
a = tl.load(
a_ptrs, mask=offs_k_for_mask[None, :] < K - ki * BLOCK_SIZE_K, other=0.0
)
b = tl.load(
b_ptrs, mask=offs_k_for_mask[:, None] < K - ki * BLOCK_SIZE_K, other=0.0
)
accumulator = tl.dot(a, b, accumulator)
tile_id_c += NUM_SMS
pid_m, pid_n = _compute_pid(
tile_id_c, num_pid_in_group, num_pid_m, GROUP_SIZE_M, NUM_SMS
)
offs_cm = pid_m * BLOCK_SIZE_M + tl.arange(0, BLOCK_SIZE_M)
offs_cn = pid_n * BLOCK_SIZE_N + tl.arange(0, BLOCK_SIZE_N)
if C_LARGE:
offs_cm = offs_cm.to(tl.int64)
offs_cn = offs_cn.to(tl.int64)
c_ptrs = c_ptr + stride_cm * offs_cm[:, None] + stride_cn * offs_cn[None, :]
c_mask = (offs_cm[:, None] < M) & (offs_cn[None, :] < N)
if HAS_BIAS:
bias_ptrs = bias_ptr + offs_cn
bias = tl.load(bias_ptrs, mask=offs_cn < N, other=0.0).to(tl.float32)
accumulator += bias
if c_ptr.dtype.element_ty == tl.float8e4nv:
c = accumulator.to(tl.float8e4nv)
else:
c = accumulator.to(tl.float16)
tl.store(c_ptrs, c, mask=c_mask)
def matmul_persistent(
a: torch.Tensor, b: torch.Tensor, bias: torch.Tensor | None = None
):
# Check constraints.
assert a.shape[1] == b.shape[0], "Incompatible dimensions"
assert a.dtype == b.dtype, "Incompatible dtypes"
assert (
bias is None or bias.dim() == 1
), "Currently assuming bias is 1D, let Horace know if you run into this"
NUM_SMS = torch.cuda.get_device_properties("cuda").multi_processor_count
M, K = a.shape
K, N = b.shape
dtype = a.dtype
# Allocates output.
c = torch.empty((M, N), device=a.device, dtype=dtype)
# 1D launch kernel where each block gets its own program.
def grid(META):
return (
min(
NUM_SMS,
triton.cdiv(M, META["BLOCK_SIZE_M"])
* triton.cdiv(N, META["BLOCK_SIZE_N"]),
),
)
configs = {
torch.bfloat16: {
"BLOCK_SIZE_M": 128,
"BLOCK_SIZE_N": 128,
"BLOCK_SIZE_K": 64,
"GROUP_SIZE_M": 8,
"num_stages": 3,
"num_warps": 8,
},
torch.float16: {
"BLOCK_SIZE_M": 128,
"BLOCK_SIZE_N": 256,
"BLOCK_SIZE_K": 64,
"GROUP_SIZE_M": 8,
"num_stages": 3,
"num_warps": 8,
},
torch.float32: {
"BLOCK_SIZE_M": 128,
"BLOCK_SIZE_N": 128,
"BLOCK_SIZE_K": 32,
"GROUP_SIZE_M": 8,
"num_stages": 3,
"num_warps": 8,
},
}
# print(a.device, b.device, c.device)
matmul_kernel_persistent[grid](
a,
b,
c, #
bias,
M,
N,
K, #
a.stride(0),
a.stride(1), #
b.stride(0),
b.stride(1), #
c.stride(0),
c.stride(1), #
NUM_SMS=NUM_SMS, #
A_LARGE=a.numel() > 2**31,
B_LARGE=b.numel() > 2**31,
C_LARGE=c.numel() > 2**31,
HAS_BIAS=bias is not None,
**configs[dtype],
)
return c
@triton.jit
def _log_softmax_kernel(
input_ptr,
output_ptr,
input_row_stride,
output_row_stride,
n_cols,
BLOCK_SIZE: tl.constexpr,
):
"""
Compute log_softmax along the last dimension of a 2D tensor.
Each block handles one row of the input tensor.
"""
# Get the row index for this block
row_idx = tl.program_id(0).to(tl.int64)
# Compute base pointers for input and output rows
row_start_ptr = input_ptr + row_idx * input_row_stride
output_row_start_ptr = output_ptr + row_idx * output_row_stride
# Step 1: Find maximum value in the row for numerical stability
max_val = -float("inf")
for col_offset in range(0, n_cols, BLOCK_SIZE):
col_idx = col_offset + tl.arange(0, BLOCK_SIZE)
mask = col_idx < n_cols
# Load values
vals = tl.load(row_start_ptr + col_idx, mask=mask, other=-float("inf"))
# Update maximum
max_val = tl.max(tl.maximum(vals, max_val))
# Step 2: Compute sum of exp(x - max_val)
sum_exp = 0.0
for col_offset in range(0, n_cols, BLOCK_SIZE):
col_idx = col_offset + tl.arange(0, BLOCK_SIZE)
mask = col_idx < n_cols
# Load values
vals = tl.load(row_start_ptr + col_idx, mask=mask, other=0.0)
# Compute exp(x - max_val) and accumulate
exp_vals = tl.exp(vals - max_val)
sum_exp += tl.sum(tl.where(mask, exp_vals, 0.0))
# Compute log(sum_exp)
log_sum_exp = tl.log(sum_exp)
# Step 3: Compute final log_softmax values: x - max_val - log_sum_exp
for col_offset in range(0, n_cols, BLOCK_SIZE):
col_idx = col_offset + tl.arange(0, BLOCK_SIZE)
mask = col_idx < n_cols
# Load values
vals = tl.load(row_start_ptr + col_idx, mask=mask)
# Compute log_softmax
output = vals - max_val - log_sum_exp
# Store results
tl.store(output_row_start_ptr + col_idx, output, mask=mask)
def log_softmax(input: torch.Tensor, dim: int = -1) -> torch.Tensor:
"""
Compute log_softmax using Triton kernel.
Args:
input: Input tensor
dim: Dimension along which to compute log_softmax (only -1 or last dim supported)
>> Stashed changes
Returns:
Tensor with log_softmax applied along the specified dimension
"""
if dim != -1 and dim != input.ndim - 1:
raise ValueError(
"This implementation only supports log_softmax along the last dimension"
)
# Flatten all dimensions except the last one
original_shape = input.shape
input_2d = input.reshape(-1, input.shape[-1])
input_2d = input_2d.contiguous()
n_rows, n_cols = input_2d.shape
# Allocate output tensor
output = torch.empty_like(input_2d)
# Choose block size based on the number of columns
BLOCK_SIZE = 1024
# Launch kernel with one block per row
grid = (n_rows,)
_log_softmax_kernel[grid](
input_2d,
output,
input_2d.stride(0),
output.stride(0),
n_cols,
BLOCK_SIZE=BLOCK_SIZE,
)
# Reshape output back to original shape
return output.reshape(original_shape)
@triton.jit
def mean_kernel(
input_ptr,
output_ptr,
input_stride0,
input_stride1,
input_stride2,
output_stride0,
output_stride1,
M, # size before reduction dim
N, # size of reduction dim
K, # size after reduction dim
BLOCK_SIZE: tl.constexpr,
):
"""
Kernel for computing mean along a single dimension.
Input is viewed as (M, N, K) where N is the dimension being reduced.
"""
# Program ID gives us which output element we're computing
pid = tl.program_id(0)
# Compute output indices
m_idx = pid // K
k_idx = pid % K
# Bounds check
if m_idx >= M or k_idx >= K:
return
# Accumulate sum across reduction dimension
acc = 0.0
for n_start in range(0, N, BLOCK_SIZE):
n_offsets = n_start + tl.arange(0, BLOCK_SIZE)
mask = n_offsets < N
# Calculate input indices
input_idx = (
m_idx * input_stride0 + n_offsets * input_stride1 + k_idx * input_stride2
)
# Load and accumulate
vals = tl.load(input_ptr + input_idx, mask=mask, other=0.0)
acc += tl.sum(vals)
# Compute mean and store
mean_val = acc / N
output_idx = m_idx * output_stride0 + k_idx * output_stride1
tl.store(output_ptr + output_idx, mean_val)
def mean_dim(
input: torch.Tensor,
dim: int,
keepdim: bool = False,
dtype: torch.dtype | None = None,
) -> torch.Tensor:
"""
Triton implementation of torch.mean with single dimension reduction.
Args:
input: Input tensor
dim: Single dimension along which to compute mean
keepdim: Whether to keep the reduced dimension
dtype: Output dtype. If None, uses input dtype (or float32 for integer inputs)
Returns:
Tensor with mean values along specified dimension
"""
# Validate inputs
assert input.is_cuda, "Input must be a CUDA tensor"
assert (
-input.ndim <= dim < input.ndim
), f"Invalid dimension {dim} for tensor with {input.ndim} dimensions"
# Handle negative dim
if dim < 0:
dim = dim + input.ndim
# Handle dtype
if dtype is None:
if input.dtype in [torch.int8, torch.int16, torch.int32, torch.int64]:
dtype = torch.float32
else:
dtype = input.dtype
# Convert input to appropriate dtype if needed
if input.dtype != dtype:
input = input.to(dtype)
# Get input shape and strides
shape = list(input.shape)
# Calculate dimensions for kernel
M = 1
for i in range(dim):
M *= shape[i]
N = shape[dim]
K = 1
for i in range(dim + 1, len(shape)):
K *= shape[i]
# Reshape input to 3D view (M, N, K)
input_3d = input.reshape(M, N, K)
# Create output shape
if keepdim:
output_shape = shape.copy()
output_shape[dim] = 1
else:
output_shape = shape[:dim] + shape[dim + 1 :]
# Create output tensor
output = torch.empty(output_shape, dtype=dtype, device=input.device)
# Reshape output for kernel
if keepdim:
output_2d = output.reshape(M, 1, K).squeeze(1)
else:
output_2d = output.reshape(M, K)
# Launch kernel
grid = (M * K,)
BLOCK_SIZE = 1024
mean_kernel[grid](
input_3d,
output_2d,
input_3d.stride(0),
input_3d.stride(1),
input_3d.stride(2),
output_2d.stride(0),
output_2d.stride(1) if output_2d.ndim > 1 else 0,
M,
N,
K,
BLOCK_SIZE,
)
return output
def mm_batch_invariant(a, b):
return matmul_persistent(a, b)
def addmm_batch_invariant(bias, a, b):
return matmul_persistent(a, b, bias=bias)
def _log_softmax_batch_invariant(input, dim, _half_to_float):
assert not _half_to_float, "not implemented"
return log_softmax(input, dim=dim)
def mean_batch_invariant(input, dim, keepdim=False, dtype: torch.dtype | None = None):
assert dtype is None or dtype == torch.float32, f"unsupported dtype: {dtype}"
if len(dim) == 1:
return mean_dim(input, dim[0], keepdim=keepdim)
else:
assert input.dtype in {
torch.float16,
torch.bfloat16,
torch.float32,
}, "only float types supported for now"
n_elems = 1
for d in dim:
n_elems *= input.shape[d]
return torch.sum(input, dim=dim, keepdim=keepdim, dtype=torch.float32) / n_elems
_batch_invariant_MODE = False
_batch_invariant_LIB = None
def is_batch_invariant_mode_enabled():
return _batch_invariant_MODE
def enable_batch_invariant_mode():
global _batch_invariant_MODE, _batch_invariant_LIB
if _batch_invariant_MODE:
return
_batch_invariant_MODE = True
_batch_invariant_LIB = torch.library.Library("aten", "IMPL")
_batch_invariant_LIB.impl("aten::mm", mm_batch_invariant, "CUDA")
_batch_invariant_LIB.impl("aten::addmm", addmm_batch_invariant, "CUDA")
_batch_invariant_LIB.impl(
"aten::_log_softmax", _log_softmax_batch_invariant, "CUDA"
)
_batch_invariant_LIB.impl("aten::mean.dim", mean_batch_invariant, "CUDA")
def disable_batch_invariant_mode():
global _batch_invariant_MODE, _batch_invariant_LIB
if _batch_invariant_LIB is not None:
_batch_invariant_LIB._destroy()
_batch_invariant_MODE = False
_batch_invariant_LIB = None
@contextlib.contextmanager
def set_batch_invariant_mode(enabled: bool = True):
global _batch_invariant_MODE, _batch_invariant_LIB
old_data = (_batch_invariant_MODE, _batch_invariant_LIB)
if enabled:
enable_batch_invariant_mode()
else:
disable_batch_invariant_mode()
yield
if _batch_invariant_LIB is not None:
_batch_invariant_LIB._destroy()
_batch_invariant_MODE, _batch_invariant_LIB = old_data
AttentionBlockSize = namedtuple("AttentionBlockSize", ["block_m", "block_n"])
def get_batch_invariant_attention_block_size() -> AttentionBlockSize:
return AttentionBlockSize(block_m=16, block_n=16)
...@@ -408,7 +408,7 @@ class ModelRunner: ...@@ -408,7 +408,7 @@ class ModelRunner:
# Enable batch invariant mode # Enable batch invariant mode
if server_args.enable_deterministic_inference: if server_args.enable_deterministic_inference:
from batch_invariant_ops import enable_batch_invariant_mode from sglang.srt.batch_invariant_ops import enable_batch_invariant_mode
enable_batch_invariant_mode() enable_batch_invariant_mode()
......
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment