Unverified Commit 862cd265 authored by Byron Hsu's avatar Byron Hsu Committed by GitHub
Browse files

[engine] support async and streaming (#1614)

parent 00c7e636
from sanic import Sanic, text
from sanic.response import json
import sglang as sgl
engine = None
# Create an instance of the Sanic app
app = Sanic("sanic-server")
# Define an asynchronous route handler
@app.route("/generate", methods=["POST"])
async def generate(request):
prompt = request.json.get("prompt")
if not prompt:
return json({"error": "Prompt is required"}, status=400)
# async_generate returns a dict
result = await engine.async_generate(prompt)
return text(result["text"])
@app.route("/generate_stream", methods=["POST"])
async def generate_stream(request):
prompt = request.json.get("prompt")
if not prompt:
return json({"error": "Prompt is required"}, status=400)
# async_generate returns a dict
result = await engine.async_generate(prompt, stream=True)
# https://sanic.dev/en/guide/advanced/streaming.md#streaming
# init the response
response = await request.respond()
# result is an async generator
async for chunk in result:
await response.send(chunk["text"])
await response.eof()
def run_server():
global engine
engine = sgl.Engine(model_path="meta-llama/Meta-Llama-3.1-8B-Instruct")
app.run(host="0.0.0.0", port=8000, single_process=True)
if __name__ == "__main__":
run_server()
# SGLang Engine
## Introduction
SGLang provides a direct inference engine without the need for an HTTP server. There are generally two use cases:
1. **Offline Batch Inference**
2. **Custom Server on Top of the Engine**
## Examples
### 1. [Offline Batch Inference](./offline_batch_inference.py)
In this example, we launch an SGLang engine and feed a batch of inputs for inference. If you provide a very large batch, the engine will intelligently schedule the requests to process efficiently and prevent OOM (Out of Memory) errors.
### 2. [Custom Server](./custom_server.py)
This example demonstrates how to create a custom server on top of the SGLang Engine. We use [Sanic](https://sanic.dev/en/) as an example. The server supports both non-streaming and streaming endpoints.
#### Steps:
1. Install Sanic:
```bash
pip install sanic
```
2. Run the server:
```bash
python custom_server
```
3. Send requests:
```bash
curl -X POST http://localhost:8000/generate -H "Content-Type: application/json" -d '{"prompt": "The Transformer architecture is..."}'
curl -X POST http://localhost:8000/generate_stream -H "Content-Type: application/json" -d '{"prompt": "The Transformer architecture is..."}' --no-buffer
```
This will send both non-streaming and streaming requests to the server.
\ No newline at end of file
......@@ -716,7 +716,10 @@ class Engine:
logprob_start_len: Optional[Union[List[int], int]] = None,
top_logprobs_num: Optional[Union[List[int], int]] = None,
lora_path: Optional[List[Optional[str]]] = None,
stream: bool = False,
):
# TODO (ByronHsu): refactor to reduce the duplicated code
obj = GenerateReqInput(
text=prompt,
sampling_params=sampling_params,
......@@ -724,13 +727,86 @@ class Engine:
logprob_start_len=logprob_start_len,
top_logprobs_num=top_logprobs_num,
lora_path=lora_path,
stream=stream,
)
# get the current event loop
loop = asyncio.get_event_loop()
return loop.run_until_complete(generate_request(obj, None))
ret = loop.run_until_complete(generate_request(obj, None))
if stream is True:
STREAM_END_SYMBOL = "data: [DONE]"
STREAM_CHUNK_START_SYMBOL = "data:"
def generator_wrapper():
offset = 0
loop = asyncio.get_event_loop()
generator = ret.body_iterator
while True:
chunk = loop.run_until_complete(generator.__anext__())
if chunk.startswith(STREAM_END_SYMBOL):
break
else:
data = json.loads(chunk[len(STREAM_CHUNK_START_SYMBOL) :])
data["text"] = data["text"][offset:]
offset += len(data["text"])
yield data
# we cannot yield in the scope of generate() because python does not allow yield + return in the same function
# however, it allows to wrap the generator as a subfunction and return
return generator_wrapper()
else:
return ret
async def async_generate(
self,
prompt: Union[str, List[str]],
sampling_params: Optional[Dict] = None,
return_logprob: Optional[Union[List[bool], bool]] = False,
logprob_start_len: Optional[Union[List[int], int]] = None,
top_logprobs_num: Optional[Union[List[int], int]] = None,
lora_path: Optional[List[Optional[str]]] = None,
stream: bool = False,
):
obj = GenerateReqInput(
text=prompt,
sampling_params=sampling_params,
return_logprob=return_logprob,
logprob_start_len=logprob_start_len,
top_logprobs_num=top_logprobs_num,
lora_path=lora_path,
stream=stream,
)
ret = await generate_request(obj, None)
if stream is True:
STREAM_END_SYMBOL = "data: [DONE]"
STREAM_CHUNK_START_SYMBOL = "data:"
generator = ret.body_iterator
async def generator_wrapper():
offset = 0
while True:
chunk = await generator.__anext__()
if chunk.startswith(STREAM_END_SYMBOL):
break
else:
data = json.loads(chunk[len(STREAM_CHUNK_START_SYMBOL) :])
data["text"] = data["text"][offset:]
offset += len(data["text"])
yield data
return generator_wrapper()
else:
return ret
def shutdown(self):
kill_child_process(os.getpid(), including_parent=False)
# TODO (ByronHsu): encode and async generate
# TODO (ByronHsu): encode
import argparse
import ast
import asyncio
import json
import re
import time
import numpy as np
import sglang as sgl
from sglang.api import set_default_backend
from sglang.lang.backend.runtime_endpoint import RuntimeEndpoint
from sglang.utils import download_and_cache_file, dump_state_text, read_jsonl
INVALID = -9999999
def get_one_example(lines, i, include_answer):
ret = "Question: " + lines[i]["question"] + "\nAnswer:"
if include_answer:
ret += " " + lines[i]["answer"]
return ret
def get_few_shot_examples(lines, k):
ret = ""
for i in range(k):
ret += get_one_example(lines, i, True) + "\n\n"
return ret
def get_answer_value(answer_str):
answer_str = answer_str.replace(",", "")
numbers = re.findall(r"\d+", answer_str)
if len(numbers) < 1:
return INVALID
try:
return ast.literal_eval(numbers[-1])
except SyntaxError:
return INVALID
async def concurrent_generate(engine, prompts, sampling_param):
tasks = []
for prompt in prompts:
tasks.append(asyncio.create_task(engine.async_generate(prompt, sampling_param)))
outputs = await asyncio.gather(*tasks)
return outputs
def run_eval(args):
# Select backend
engine = sgl.Engine(model_path=args.model_path, log_level="error")
if args.local_data_path is None:
# Read data
url = "https://raw.githubusercontent.com/openai/grade-school-math/master/grade_school_math/data/test.jsonl"
filename = download_and_cache_file(url)
else:
filename = args.local_data_path
lines = list(read_jsonl(filename))
# Construct prompts
num_questions = args.num_questions
num_shots = args.num_shots
few_shot_examples = get_few_shot_examples(lines, num_shots)
questions = []
labels = []
for i in range(len(lines[:num_questions])):
questions.append(get_one_example(lines, i, False))
labels.append(get_answer_value(lines[i]["answer"]))
assert all(l != INVALID for l in labels)
arguments = [{"question": q} for q in questions]
# construct the prompts
prompts = []
for i, arg in enumerate(arguments):
q = arg["question"]
prompt = few_shot_examples + q
prompts.append(prompt)
sampling_param = {
"stop": ["Question", "Assistant:", "<|separator|>"],
"max_new_tokens": 512,
"temperature": 0,
}
# Run requests
tic = time.time()
loop = asyncio.get_event_loop()
outputs = loop.run_until_complete(
concurrent_generate(engine, prompts, sampling_param)
)
# End requests
latency = time.time() - tic
# Shutdown the engine
engine.shutdown()
# Parse output
preds = []
for output in outputs:
preds.append(get_answer_value(output["text"]))
# Compute accuracy
acc = np.mean(np.array(preds) == np.array(labels))
invalid = np.mean(np.array(preds) == INVALID)
# Compute speed
num_output_tokens = sum(
output["meta_info"]["completion_tokens"] for output in outputs
)
output_throughput = num_output_tokens / latency
# Print results
print(f"Accuracy: {acc:.3f}")
print(f"Invalid: {invalid:.3f}")
print(f"Latency: {latency:.3f} s")
print(f"Output throughput: {output_throughput:.3f} token/s")
return {
"accuracy": acc,
"latency": latency,
"output_throughput": output_throughput,
}
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument(
"--model-path", type=str, default="meta-llama/Meta-Llama-3.1-8B-Instruct"
)
parser.add_argument("--local-data-path", type=Optional[str], default=None)
parser.add_argument("--num-shots", type=int, default=5)
parser.add_argument("--num-questions", type=int, default=200)
args = parser.parse_args()
metrics = run_eval(args)
......@@ -77,5 +77,7 @@ if __name__ == "__main__":
files = files[args.range_begin : args.range_end]
print("The running tests are ", files)
exit_code = run_unittest_files(files, args.timeout_per_file)
exit(exit_code)
import asyncio
import json
import unittest
from types import SimpleNamespace
import sglang as sgl
from sglang.test.few_shot_gsm8k_engine import run_eval
from sglang.test.test_utils import DEFAULT_MODEL_NAME_FOR_TEST
class TestSRTBackend(unittest.TestCase):
def test_engine_runtime_consistency(self):
def test_1_engine_runtime_consistency(self):
prompt = "Today is a sunny day and I like"
model_path = DEFAULT_MODEL_NAME_FOR_TEST
sampling_params = {"temperature": 0, "max_new_tokens": 8}
engine = sgl.Engine(model_path=model_path, random_seed=42)
engine = sgl.Engine(model_path=model_path, random_seed=42, log_level="error")
out1 = engine.generate(prompt, sampling_params)["text"]
engine.shutdown()
......@@ -28,18 +31,76 @@ class TestSRTBackend(unittest.TestCase):
print(out2)
assert out1 == out2, f"{out1} != {out2}"
def test_engine_multiple_generate(self):
def test_2_engine_multiple_generate(self):
# just to ensure there is no issue running multiple generate calls
prompt = "Today is a sunny day and I like"
model_path = DEFAULT_MODEL_NAME_FOR_TEST
sampling_params = {"temperature": 0, "max_new_tokens": 8}
engine = sgl.Engine(model_path=model_path, random_seed=42)
engine = sgl.Engine(model_path=model_path, random_seed=42, log_level="error")
engine.generate(prompt, sampling_params)
engine.generate(prompt, sampling_params)
engine.shutdown()
def test_3_sync_streaming_combination(self):
prompt = "AI safety is..."
sampling_params = {"temperature": 0.8, "top_p": 0.95}
async def async_streaming(engine):
generator = await engine.async_generate(
prompt, sampling_params, stream=True
)
async for output in generator:
print(output["text"], end="", flush=True)
print()
# Create an LLM.
llm = sgl.Engine(
model_path=DEFAULT_MODEL_NAME_FOR_TEST,
log_level="error",
)
# 1. sync + non streaming
print("\n\n==== 1. sync + non streaming ====")
output = llm.generate(prompt, sampling_params)
print(output["text"])
# 2. sync + streaming
print("\n\n==== 2. sync + streaming ====")
output_generator = llm.generate(prompt, sampling_params, stream=True)
for output in output_generator:
print(output["text"], end="", flush=True)
print()
loop = asyncio.get_event_loop()
# 3. async + non_streaming
print("\n\n==== 3. async + non streaming ====")
output = loop.run_until_complete(llm.async_generate(prompt, sampling_params))
print(output["text"])
# 4. async + streaming
print("\n\n==== 4. async + streaming ====")
loop.run_until_complete(async_streaming(llm))
llm.shutdown()
def test_4_gsm8k(self):
args = SimpleNamespace(
model_path=DEFAULT_MODEL_NAME_FOR_TEST,
local_data_path=None,
num_shots=5,
num_questions=200,
)
metrics = run_eval(args)
assert metrics["accuracy"] > 0.7
if __name__ == "__main__":
unittest.main()
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment