"vscode:/vscode.git/clone" did not exist on "6252ade98571c3374d7e7df3430a2bfbddfc5eb3"
Unverified Commit 815dce05 authored by yukavio's avatar yukavio Committed by GitHub
Browse files

Eagle speculative decoding part 4: Add EAGLE2 worker (#2150)


Co-authored-by: default avatarkavioyu <kavioyu@tencent.com>
Co-authored-by: default avatarLianmin Zheng <lianminzheng@gmail.com>
parent ad20b795
import sglang as sgl
def main():
# Sample prompts.
prompts = [
"Hello, my name is",
"The president of the United States is",
"The capital of France is",
"The future of AI is",
]
# Create a sampling params object.
sampling_params = {"temperature": 0, "max_new_tokens": 30}
# Create an LLM.
llm = sgl.Engine(
model_path="meta-llama/Llama-2-7b-chat-hf",
speculative_algorithm="EAGLE",
speculative_draft_model_path="lmzheng/sglang-EAGLE-llama2-chat-7B",
speculative_num_steps=3,
speculative_eagle_topk=4,
speculative_num_draft_tokens=16,
)
outputs = llm.generate(prompts, sampling_params)
# Print the outputs.
for prompt, output in zip(prompts, outputs):
print("===============================")
print(f"Prompt: {prompt}\nGenerated text: {output['text']}")
# The __main__ condition is necessary here because we use "spawn" to create subprocesses
# Spawn starts a fresh program every time, if there is no __main__, it will run into infinite loop to keep spawning processes from sgl.Engine
if __name__ == "__main__":
main()
import cutex
import torch
# parent_table [bs,topk*depth+)]
# selected_index [bs,draft_token_num-1)]
# verified_seq_len [bs]
# tree_mask [draft_token*(seq_len[0]+draft_token) | draft_token*(seq_len[1]+draft_token) | ..] = [sum(verified_seq_len)*draft_token+bs*draft_token*draft_token]
# positions [bs*draft_token]
# retrive_index [b, draft_token, depth+2]
kernels = cutex.SourceModule(
"""
//cuda
__global__ void build_tree(Tensor<long, 2> parent_list, Tensor<long, 2> selected_index, Tensor<int, 1> verified_seq_len,
Tensor<bool, 1> tree_mask, Tensor<long, 1> positions, Tensor<long, 3> retrive_index, int topk, int depth, int draft_token_num) {
int bid = blockIdx.x;
int tid = threadIdx.x;
if (tid >= draft_token_num){
return;
}
int seq_tree_idx = draft_token_num * draft_token_num * bid;
for(int i=0; i<bid; i++){
seq_tree_idx += verified_seq_len[i] * draft_token_num;
}
int seq_len = verified_seq_len[bid];
int token_tree_idx = seq_tree_idx + (seq_len+draft_token_num)*tid + seq_len + 1;
for(int i=0; i<draft_token_num-1; i++){
tree_mask[token_tree_idx+i] = false;
}
int position = 0;
if (tid==0){
positions[bid*draft_token_num] = seq_len;
retrive_index[bid][0][0] = bid * draft_token_num;
return;
}
int depends_order[10];
int cur_position = tid-1;
while(true){
depends_order[position] = cur_position+1;
position += 1;
tree_mask[token_tree_idx+cur_position] = true;
int parent_tb_idx = selected_index[bid][cur_position]/topk;
if(parent_tb_idx==0){
break;
}
int token_idx = parent_list[bid][parent_tb_idx];
for(cur_position=0; cur_position<draft_token_num;cur_position++){
if(selected_index[bid][cur_position]==token_idx){
break;
}
}
}
positions[bid*draft_token_num+tid] = position + seq_len;
int is_leaf = 0;
for(int i=1;i<draft_token_num;i++){
if(tree_mask[seq_tree_idx + i * (draft_token_num+seq_len) + seq_len + tid])
{
is_leaf ++;
}
}
if(is_leaf==1){
for(int i=0; i<position; i++){
retrive_index[bid][tid][position-i] = depends_order[i] + bid * draft_token_num;
}
retrive_index[bid][tid][0] = bid*draft_token_num;
}
}
//!cuda
""",
float_bits=16, # change to 16 to use half precision as `float` type in the above source code.
boundscheck=True, # turning on for debug and off for performance (to use full threads of a block), default is on.
)
def build_tree_kernel(parent_list, top_score_index, seq_lens, topk, depth, draft_token):
bs = seq_lens.numel()
device = parent_list.device
tree_mask = torch.full(
(torch.sum(seq_lens).item() * draft_token + draft_token * draft_token * bs,),
True,
device=device,
)
retrive_index = torch.full(
(bs, draft_token, depth + 2), -1, device=device, dtype=torch.long
)
positions = torch.empty((bs * draft_token,), device=device, dtype=torch.long)
kernels.build_tree(
parent_list,
top_score_index,
seq_lens.to(torch.int32),
tree_mask,
positions,
retrive_index,
topk,
depth,
draft_token,
grid=(bs, 1, 1),
block=(64, 1, 1),
)
index = retrive_index.sum(dim=-1) != -depth - 2
cum_len = torch.cumsum(torch.sum(index, dim=-1), dim=-1)
retrive_cum_len = torch.zeros(
(cum_len.numel() + 1,), dtype=torch.int32, device="cuda"
)
retrive_cum_len[1:] = cum_len
retrive_index = retrive_index[index]
return tree_mask, positions, retrive_index, retrive_cum_len
if __name__ == "__main__":
def findp(p_i, index, parent_list):
pos = index // 10
index_list = index.tolist()
parent_list = parent_list.tolist()
res = [p_i]
while True:
p = pos[p_i]
if p == 0:
break
token_idx = parent_list[p]
p_i = index_list.index(token_idx)
res.append(p_i)
return res
def create_mask(seq_len, draft_token, index, parent_list, max_depth):
mask = []
positions = []
retrive_index = []
for i, lens in enumerate(seq_len.tolist()):
first_mask = torch.full((lens + draft_token,), True)
first_mask[-(draft_token - 1) :] = False
positions.append(lens)
mask.append(first_mask)
seq_order = []
first_index = torch.Tensor([0] + [-1] * (depth + 1)).cuda().to(torch.long)
r_index = [first_index]
for j in range(draft_token - 1):
mask.append(torch.full((lens + 1,), True))
idx = findp(j, index, parent_list)
seq_order.append(idx)
positions.append(len(idx) + seq_len)
t = torch.full((draft_token - 1,), False)
t[idx] = True
mask.append(t)
for i in range(1, draft_token - 1):
is_leaf = 0
for j in range(draft_token - 1):
if i in seq_order[j]:
is_leaf += 1
if is_leaf == 1:
order_list = [0] + [x + 1 for x in seq_order[i][::-1]]
for _ in range(max_depth + 1 - len(seq_order[i])):
order_list.append(-1)
order = torch.Tensor(order_list).cuda().to(torch.long)
r_index.append(order)
retrive_index.append(torch.stack(r_index))
return (
torch.cat(mask).cuda(),
torch.Tensor(positions).cuda().to(torch.long),
torch.stack(retrive_index),
)
index = (
torch.Tensor(
[
0,
1,
2,
3,
10,
11,
12,
13,
20,
21,
22,
30,
110,
130,
150,
160,
210,
211,
212,
213,
214,
215,
216,
217,
218,
219,
220,
230,
310,
311,
312,
313,
314,
315,
316,
317,
320,
321,
322,
330,
360,
380,
390,
410,
411,
412,
413,
414,
415,
416,
417,
418,
419,
420,
421,
422,
423,
430,
431,
440,
441,
460,
470,
]
)
.to(torch.long)
.cuda()
)
parent_list = (
torch.Tensor(
[
-1,
0,
1,
2,
3,
4,
5,
6,
7,
8,
9,
10,
11,
12,
20,
30,
21,
13,
22,
40,
23,
110,
130,
160,
150,
190,
120,
111,
121,
200,
180,
210,
211,
212,
213,
214,
215,
216,
220,
230,
217,
310,
311,
312,
313,
320,
314,
321,
315,
316,
317,
]
)
.to(torch.long)
.cuda()
)
verified_seq_len = torch.Tensor([47]).to(torch.long).cuda()
bs = verified_seq_len.shape[0]
topk = 10
depth = 5 # depth <= 10
draft_token = 64
tree_mask = torch.full(
(
torch.sum(verified_seq_len).item() * draft_token
+ draft_token * draft_token * bs,
),
True,
).cuda()
retrive_index = torch.full(
(bs, draft_token, depth + 2), -1, device="cuda", dtype=torch.long
)
positions = torch.empty((bs * draft_token,), device="cuda", dtype=torch.long)
kernels.build_tree(
parent_list.unsqueeze(0),
index.unsqueeze(0),
verified_seq_len,
tree_mask,
positions,
retrive_index,
topk,
depth,
draft_token,
grid=(bs, 1, 1),
block=(64, 1, 1),
)
retrive_index = retrive_index[retrive_index.sum(dim=-1) != -depth - 2]
c_mask, c_positions, c_retive_index = create_mask(
verified_seq_len, draft_token, index, parent_list, depth
)
assert torch.allclose(tree_mask, c_mask), "tree mask has error."
assert torch.allclose(positions, c_positions), "positions has error."
assert torch.allclose(retrive_index, c_retive_index), "retrive_index has error."
from __future__ import annotations
from typing import TYPE_CHECKING, List
import torch
import triton
import triton.language as tl
from sglang.srt.layers.attention.flashinfer_backend import (
create_flashinfer_kv_indices_triton,
)
from sglang.srt.model_executor.forward_batch_info import ForwardBatch, ForwardMode
from sglang.srt.speculative.build_eagle_tree import build_tree_kernel
from sglang.srt.speculative.spec_info import SpecInfo
if TYPE_CHECKING:
from python.sglang.srt.layers.sampler import SampleOutput
from python.sglang.srt.managers.schedule_batch import ScheduleBatch
from sglang.srt.server_args import ServerArgs
@triton.jit
def eagle_verify_retrive(
retrive_index,
accept_mask,
retrive_cum_len,
accept_index,
accept_length,
extract_index,
max_len: tl.constexpr,
draft_token_num: tl.constexpr,
max_len_upper: tl.constexpr,
):
pid = tl.program_id(axis=0)
retrive_end = tl.load(retrive_cum_len + pid + 1)
retrive_start = tl.load(retrive_cum_len + pid)
retrive_len = retrive_end - retrive_start
accept_ptr = accept_mask + retrive_start
accept_offset = tl.arange(0, draft_token_num)
accept_load_mask = accept_offset < retrive_len
accept_len_list = tl.load(
accept_ptr + accept_offset, mask=accept_load_mask, other=-1
)
accept_len = tl.max(accept_len_list)
max_index = tl.argmax(accept_len_list, axis=0, tie_break_left=True)
# triton is not support argmax with tie_break_right, so I need implement it by some way
mask_max = accept_len_list == accept_len
count_mask = tl.full(shape=[draft_token_num], value=0, dtype=tl.int32)
count = tl.sum(tl.where(mask_max, 1, count_mask))
if count > 1:
index = tl.arange(0, draft_token_num)
mask_left = index != max_index
remained_index = tl.where(mask_max and mask_left, index, 0)
max_index = tl.max(remained_index)
tl.store(accept_length + pid, accept_len)
retrive_index_ptr = retrive_index + (retrive_start + max_index) * max_len
retrive_offset = tl.arange(0, max_len_upper)
retrive_load_mask = retrive_offset < accept_len + 1
data = tl.load(retrive_index_ptr + retrive_offset, mask=retrive_load_mask)
tl.store(
accept_index + pid * max_len + retrive_offset, data, mask=retrive_load_mask
)
extract_load_ptr = accept_index + pid * max_len + accept_len
if accept_len == max_len - 1:
extract_data = tl.load(extract_load_ptr - 1)
tl.store(extract_index + pid * 2, extract_data)
extract_data = tl.load(extract_load_ptr)
tl.store(extract_index + pid * 2 + 1, extract_data)
else:
extract_data = tl.load(extract_load_ptr)
tl.store(extract_index + pid * 2, extract_data)
@triton.jit
def create_extend_spec_info(
verified_id,
seq_len,
accept_len,
accept_len_cum,
positions,
new_verified_id,
accept_len_upper: tl.constexpr,
):
pid = tl.program_id(axis=0)
offset = 0 if pid == 0 else tl.load(accept_len_cum + pid - 1)
seq_length = tl.load(seq_len + pid)
accept_length = tl.load(accept_len + pid)
positions_ptr = positions + offset
data = tl.arange(0, accept_len_upper)
mask = data < accept_length
tl.store(positions_ptr + data, seq_length - accept_length + data, mask)
offset = tl.load(accept_len_cum + pid) - 1
verified_id_data = tl.load(verified_id + offset)
tl.store(new_verified_id + pid, verified_id_data)
@triton.jit
def assign_req_to_token_pool(
req_pool_indices,
req_to_token,
start_offset,
end_offset,
out_cache_loc,
pool_len: tl.constexpr,
bs_upper: tl.constexpr,
):
BLOCK_SIZE: tl.constexpr = 32
pid = tl.program_id(axis=0)
kv_start = tl.load(start_offset + pid)
kv_end = tl.load(end_offset + pid)
token_pool = req_to_token + tl.load(req_pool_indices + pid) * pool_len
length_offset = tl.arange(0, bs_upper)
start = tl.load(start_offset + length_offset, mask=length_offset < pid)
end = tl.load(end_offset + length_offset, mask=length_offset < pid)
out_offset = tl.sum(end - start, axis=0)
out_cache_ptr = out_cache_loc + out_offset
save_offset = tl.arange(0, BLOCK_SIZE) + kv_start
load_offset = tl.arange(0, BLOCK_SIZE)
num_loop = tl.cdiv(kv_end - kv_start, BLOCK_SIZE)
for _ in range(num_loop):
mask = save_offset < kv_end
data = tl.load(out_cache_ptr + load_offset, mask=mask)
tl.store(token_pool + save_offset, data, mask=mask)
save_offset += BLOCK_SIZE
load_offset += BLOCK_SIZE
@triton.jit
def generate_draft_decode_kv_indices(
req_pool_indices,
req_to_token,
paged_kernel_lens,
kv_indices,
iters: tl.constexpr,
topk: tl.constexpr,
pool_len: tl.constexpr,
bs_upper: tl.constexpr,
iter_upper: tl.constexpr,
):
BLOCK_SIZE: tl.constexpr = 128
bid = tl.program_id(axis=0)
topk_id = tl.program_id(axis=1)
load_offset = tl.arange(0, bs_upper)
seq_lens = tl.load(paged_kernel_lens + load_offset, mask=load_offset < bid)
seq_len = tl.load(paged_kernel_lens + bid)
cum_seq_len = tl.sum(seq_lens)
kv_offset = cum_seq_len * topk + bid * iters * topk + topk_id * (seq_len + iters)
kv_ptr = kv_indices + kv_offset
token_pool_ptr = req_to_token + tl.load(req_pool_indices + bid) * pool_len
kv_offset = tl.arange(0, BLOCK_SIZE)
num_loop = tl.cdiv(seq_len, BLOCK_SIZE)
for _ in range(num_loop):
mask = kv_offset < seq_len
data = tl.load(token_pool_ptr + kv_offset, mask=mask)
tl.store(kv_ptr + kv_offset, data, mask=mask)
kv_offset += BLOCK_SIZE
extend_offset = tl.arange(0, iter_upper)
extend_data = tl.load(
token_pool_ptr + seq_len + tl.arange(0, iter_upper) * topk + topk_id,
mask=extend_offset < iters,
)
tl.store(kv_ptr + seq_len + extend_offset, extend_data, mask=extend_offset < iters)
class EAGLEDraftInput(SpecInfo):
hidden_states: torch.Tensor = None
verified_id: torch.Tensor = None
positions: torch.Tensor = None
accept_length: torch.Tensor = None
has_finished: bool = False
unfinished_index: List[int] = None
def init(self, server_args: ServerArgs):
self.prev_mode = ForwardMode.DECODE
self.sample_output = None
self.topk: int = server_args.speculative_eagle_topk
self.num_verify_token: int = server_args.speculative_num_draft_tokens
self.spec_steps = server_args.speculative_num_steps
self.scores: torch.Tensor = None
self.score_list: List[torch.Tensor] = []
self.token_list: List[torch.Tensor] = []
self.origin_score_list: List[torch.Tensor] = [] # used for sampling
self.parents_list: List[torch.Tensor] = []
self.cache_list: List[torch.Tenor] = []
self.iter = 0
self.root_token: int = None
assert self.topk <= 10, "topk should <= 10"
def prepare_for_extend(self, batch: ForwardBatch):
req_pool_indices = batch.alloc_req_slots(len(batch.reqs))
out_cache_loc = batch.alloc_token_slots(batch.input_ids.numel())
batch.out_cache_loc = out_cache_loc
pt = 0
for i, req in enumerate(batch.reqs):
req.req_pool_idx = req_pool_indices[i]
pre_len, seq_len = len(req.prefix_indices), len(req.fill_ids)
assert seq_len - pre_len == req.extend_input_len
if pre_len > 0:
batch.req_to_token_pool.req_to_token[req.req_pool_idx][
:pre_len
] = req.prefix_indices
batch.req_to_token_pool.req_to_token[req.req_pool_idx][pre_len:seq_len] = (
out_cache_loc[pt : pt + req.extend_input_len]
)
pt += req.extend_input_len
seq_lens = [0] + batch.extend_lens
input_ids = batch.input_ids.tolist()
verified_id = batch.spec_info.verified_id.tolist()
model_input_ids = []
for i in range(len(seq_lens) - 1):
model_input_ids.extend(
input_ids[seq_lens[i] + 1 : seq_lens[i + 1]] + [verified_id[i]]
)
batch.input_ids = torch.tensor(
model_input_ids, dtype=torch.int32, device="cuda"
)
def capture_for_decode(
self,
sample_output: SampleOutput,
hidden_states: torch.Tensor,
prev_mode: ForwardMode,
):
self.sample_output = sample_output
self.prev_mode = prev_mode
self.hidden_states = hidden_states
def prepare_for_decode(self, batch: ScheduleBatch):
prob = self.sample_output # b * (1/topk), vocab
top = torch.topk(prob, self.topk, dim=-1)
topk_index, topk_p = top.indices, top.values # b * (1/topk), topk
if self.prev_mode == ForwardMode.DECODE:
scores = torch.mul(
self.scores.unsqueeze(2), topk_p.reshape(-1, self.topk, self.topk)
) # (b, topk) mul (b * topk ,topk) -> b, topk, topk
topk_cs = torch.topk(
scores.flatten(start_dim=1), self.topk, dim=-1
) # (b, topk)
topk_cs_index, topk_cs_p = topk_cs.indices, topk_cs.values
self.scores = topk_cs_p
selected_input_index = topk_cs_index.flatten() // self.topk # b* topk
batch.spec_info.hidden_states = batch.spec_info.hidden_states[
selected_input_index, :
]
topk_index = topk_index.reshape(-1, self.topk**2)
batch.input_ids = torch.gather(
topk_index, index=topk_cs_index, dim=1
).flatten()
batch.out_cache_loc = batch.alloc_token_slots(batch.input_ids.numel())
self.score_list.append(scores) # b, topk, topk
self.token_list.append(topk_index) # b, topk*topk
self.origin_score_list.append(topk_p.reshape(topk_index.shape))
self.parents_list.append(
topk_cs_index + (self.topk**2 * (self.iter - 1) + self.topk)
) # b, topk
elif self.prev_mode in (ForwardMode.EXTEND, ForwardMode.DRAFT_EXTEND):
self.scores = topk_p # b, top_k
self.score_list.append(topk_p.unsqueeze(1))
self.token_list.append(topk_index)
self.origin_score_list.append(topk_p)
batch.spec_info.hidden_states = (
batch.spec_info.hidden_states.repeat_interleave(self.topk, 0)
)
batch.input_ids = topk_index.flatten()
batch.out_cache_loc = batch.alloc_token_slots(topk_index.numel())
self.parents_list.append(
torch.arange(-1, self.topk, dtype=torch.long, device="cuda")
.unsqueeze(0)
.repeat(self.scores.shape[0], 1)
) # b, topk+1
self.cache_list.append(batch.out_cache_loc)
self.positions = (
batch.seq_lens[:, None]
+ torch.ones([1, self.topk], device="cuda", dtype=torch.long) * self.iter
).flatten()
bs = batch.seq_lens.numel()
assign_req_to_token_pool[(bs,)](
batch.req_pool_indices,
batch.req_to_token_pool.req_to_token,
batch.seq_lens + self.topk * self.iter,
batch.seq_lens + self.topk * (self.iter + 1),
batch.out_cache_loc,
batch.req_to_token_pool.req_to_token.shape[1],
triton.next_power_of_2(bs),
)
self.iter += 1
def prepare_extend_after_decode(self, batch: ScheduleBatch):
batch.out_cache_loc = batch.alloc_token_slots(self.verified_id.numel())
batch.extend_lens = (self.accept_length + 1).tolist()
pt = 0
seq_lens = batch.seq_lens.tolist()
i = 0
for req in batch.reqs:
if req.finished():
continue
# assert seq_len - pre_len == req.extend_input_len
input_len = self.accept_length[i] + 1
seq_len = seq_lens[i]
batch.req_to_token_pool.req_to_token[req.req_pool_idx][
seq_len - input_len : seq_len
] = batch.out_cache_loc[pt : pt + input_len]
pt += input_len
i += 1
self.positions = torch.empty_like(self.verified_id)
new_verified_id = torch.empty_like(self.accept_length, dtype=torch.long)
self.accept_length.add_(1)
create_extend_spec_info[(self.accept_length.numel(),)](
self.verified_id,
batch.seq_lens,
self.accept_length,
torch.cumsum(self.accept_length, axis=0, dtype=torch.int),
self.positions,
new_verified_id,
triton.next_power_of_2(self.spec_steps + 1),
)
batch.input_ids = self.verified_id
self.verified_id = new_verified_id
def prepare_for_verify(self, batch: ScheduleBatch):
score_list = torch.cat(self.score_list, dim=1).flatten(
1
) # b, n, topk; n= 1+(self.iter-1)*self.topk
ss_token_list = torch.cat(
self.token_list, dim=1
) # b, (self.topk+(self.iter-1)*self.topk)
origin_token_list = torch.cat(self.origin_score_list, dim=1)
top_scores = torch.topk(score_list, self.num_verify_token - 1, dim=-1)
top_scores_index = top_scores.indices
top_scores_index = torch.sort(top_scores_index).values
draft_tokens = torch.gather(ss_token_list, index=top_scores_index, dim=1)
scores = torch.gather(origin_token_list, index=top_scores_index, dim=1)
draft_tokens = torch.cat((self.verified_id.unsqueeze(1), draft_tokens), dim=1)
parent_list = torch.cat(self.parents_list[:-1], dim=1)
tree_mask, position, retrive_index, retrive_cum_len = build_tree_kernel(
parent_list,
top_scores_index,
batch.seq_lens,
self.topk,
self.iter - 1,
self.num_verify_token,
)
return EagleVerifyInput(
draft_tokens.flatten(),
scores.flatten(),
tree_mask,
position,
retrive_index,
retrive_cum_len,
self.num_verify_token,
)
def generate_attn_arg_decode(
self,
req_pool_indices: torch.Tensor,
paged_kernel_lens: torch.Tensor,
req_to_token: torch.Tensor,
):
seq_num = req_pool_indices.numel()
bs = self.topk * req_pool_indices.numel()
seq_len = self.positions.reshape(-1).contiguous()
cum_kv_seq_len = torch.zeros((bs + 1,), dtype=torch.int32, device="cuda")
cum_kv_seq_len[1:] = torch.cumsum(seq_len + 1, dim=0)
total_len = torch.sum(paged_kernel_lens).item()
kv_indices = torch.empty(
(total_len * self.topk + seq_num * self.iter * self.topk,),
dtype=torch.int32,
device="cuda",
)
generate_draft_decode_kv_indices[(req_pool_indices.numel(), self.topk)](
req_pool_indices,
req_to_token,
paged_kernel_lens,
kv_indices,
self.iter,
self.topk,
req_to_token.shape[1],
triton.next_power_of_2(seq_num),
triton.next_power_of_2(self.spec_steps),
)
return bs, kv_indices, cum_kv_seq_len
def clear(self):
self.iter = 0
self.score_list.clear()
self.positions = None
def clear_draft_cache(self, batch):
draft_cache = torch.cat(self.cache_list, dim=0)
batch.token_to_kv_pool.free(draft_cache)
def generate_attn_arg_prefill(
self,
req_pool_indices: torch.Tensor,
paged_kernel_lens: torch.Tensor,
req_to_token: torch.Tensor,
):
bs = self.accept_length.numel()
qo_indptr = torch.zeros((bs + 1,), dtype=torch.int32, device="cuda")
qo_indptr[1:] = torch.cumsum(self.accept_length, dim=0)
cum_kv_seq_len = torch.zeros((bs + 1,), dtype=torch.int32, device="cuda")
cum_kv_seq_len[1:] = torch.cumsum(paged_kernel_lens, dim=0)
kv_indices = torch.empty(cum_kv_seq_len[-1], dtype=torch.int32, device="cuda")
create_flashinfer_kv_indices_triton[(bs,)](
req_to_token,
req_pool_indices,
paged_kernel_lens,
cum_kv_seq_len,
None,
kv_indices,
req_to_token.size(1),
)
return kv_indices, cum_kv_seq_len, qo_indptr, None
def merge_batch(self, spec_info: EAGLEDraftInput):
self.hidden_states = torch.cat(
[self.hidden_states, spec_info.hidden_states], axis=0
)
self.verified_id = torch.cat([self.verified_id, spec_info.verified_id], axis=0)
# self.positions = torch.cat([self.positions, spec_info.positions], axis=0)
self.sample_output = torch.cat([self.sample_output, spec_info.sample_output])
class EagleVerifyInput(SpecInfo):
def __init__(
self,
draft_token: torch.Tensor,
draft_score: torch.Tensor,
tree_mask: torch.Tensor,
positions: torch.Tensor,
retrive_index: torch.Tensor,
retrive_cum_len: torch.Tensor,
draft_token_num: int,
):
self.draft_token = draft_token
self.draft_score = draft_score
self.custom_mask = tree_mask
self.positions = positions
self.retrive_index = retrive_index
self.retrive_cum_len = retrive_cum_len
self.draft_token_num = draft_token_num
def prepare_for_verify(self, batch: ScheduleBatch):
batch.input_ids = self.draft_token
batch.out_cache_loc = batch.alloc_token_slots(batch.input_ids.numel())
bs = batch.seq_lens.numel()
assign_req_to_token_pool[(bs,)](
batch.req_pool_indices,
batch.req_to_token_pool.req_to_token,
batch.seq_lens,
batch.seq_lens + self.draft_token_num,
batch.out_cache_loc,
batch.req_to_token_pool.req_to_token.shape[1],
triton.next_power_of_2(bs),
)
def generate_attn_arg_prefill(
self,
req_pool_indices: torch.Tensor,
paged_kernel_lens: torch.Tensor,
req_to_token: torch.Tensor,
):
batch_size = len(req_pool_indices)
qo_indptr = torch.arange(
0,
(1 + batch_size) * self.draft_token_num,
step=self.draft_token_num,
dtype=torch.int32,
device="cuda",
)
cum_kv_seq_len = torch.zeros(
(batch_size + 1,), dtype=torch.int32, device="cuda"
)
paged_kernel_lens = paged_kernel_lens + self.draft_token_num
cum_kv_seq_len[1:] = torch.cumsum(paged_kernel_lens, dim=0)
kv_indices = torch.empty(cum_kv_seq_len[-1], dtype=torch.int32, device="cuda")
create_flashinfer_kv_indices_triton[(batch_size,)](
req_to_token,
req_pool_indices,
paged_kernel_lens,
cum_kv_seq_len,
None,
kv_indices,
req_to_token.size(1),
)
return kv_indices, cum_kv_seq_len, qo_indptr, self.custom_mask
def verify(self, batch: ScheduleBatch, logits_output: torch.Tensor) -> torch.Tensor:
predict = torch.argmax(logits_output.next_token_logits, dim=-1)
predict = torch.cat(
[predict, torch.full([1], -1, dtype=torch.long, device="cuda")], dim=-1
)
draft_token = torch.cat(
[self.draft_token, torch.full([1], -1, dtype=torch.long, device="cuda")],
dim=-1,
)
target_predict = predict[self.retrive_index]
candidates = draft_token[self.retrive_index]
# logits = logits_output.next_token_logits[self.retrive_index]
# target_predict = torch.argmax(logits[:, :-1], dim=-1)
accept_mask = candidates[:, 1:] == target_predict[:, :-1]
accept_mask = (torch.cumprod(accept_mask, dim=1)).sum(dim=1)
bs = self.retrive_cum_len.numel() - 1
max_draft_len = self.retrive_index.shape[-1]
accept_index = torch.full(
(bs, max_draft_len), -1, dtype=torch.long, device="cuda"
)
accept_length = torch.empty((bs,), dtype=torch.int, device="cuda")
extract_index = torch.full((bs * 2,), 0, dtype=torch.int, device="cuda")
eagle_verify_retrive[(bs,)](
self.retrive_index.contiguous(),
accept_mask.contiguous(),
self.retrive_cum_len,
accept_index,
accept_length,
extract_index,
max_draft_len,
self.draft_token_num,
triton.next_power_of_2(max_draft_len),
)
accept_index = accept_index[accept_index != -1]
# extract_index = extract_index[extract_index != 0]
draft_input = EAGLEDraftInput()
accept_length_cpu = accept_length.tolist()
verified_id = predict[accept_index]
verified_id_cpu = verified_id.tolist()
evict_mask = torch.full_like(self.draft_token, True, dtype=torch.bool)
evict_mask[accept_index] = False
mem_need_free_idx = batch.out_cache_loc[evict_mask]
batch.token_to_kv_pool.free(mem_need_free_idx)
assign_req_to_token_pool[(bs,)](
batch.req_pool_indices,
batch.req_to_token_pool.req_to_token,
batch.seq_lens,
batch.seq_lens + accept_length + 1,
batch.out_cache_loc[accept_index],
batch.req_to_token_pool.req_to_token.shape[1],
triton.next_power_of_2(bs),
)
batch.seq_lens.add_(accept_length + 1)
new_accept_index = []
unfinished_index = []
finished_extend_len = {} # {rid:accept_length + 1}
# retracted_reqs, new_token_ratio = batch.retract_decode()
low = 0
for i, (req, verified_len) in enumerate(zip(batch.reqs, accept_length_cpu)):
req.output_ids.extend(verified_id_cpu[low : low + verified_len + 1])
req.check_finished()
if req.finished():
draft_input.has_finished = True
finished_extend_len[req.rid] = verified_len + 1
else:
new_accept_index.append(accept_index[low : low + verified_len + 1])
unfinished_index.append(i)
low += verified_len + 1
if len(new_accept_index) > 0:
new_accept_index = torch.cat(new_accept_index, dim=0)
draft_input.verified_id = predict[new_accept_index]
draft_input.hidden_states = batch.spec_info.hidden_states[new_accept_index]
draft_input.accept_length = accept_length[unfinished_index]
draft_input.unfinished_index = unfinished_index
logits_output.next_token_logits = logits_output.next_token_logits[accept_index]
return draft_input, logits_output, verified_id, finished_extend_len
from typing import List, Optional, Union
import torch
from sglang.srt.layers.logits_processor import LogitsProcessorOutput
from sglang.srt.managers.schedule_batch import Req, ScheduleBatch
from sglang.srt.managers.tp_worker import TpModelWorker
from sglang.srt.model_executor.forward_batch_info import (
CaptureHiddenMode,
ForwardBatch,
ForwardMode,
)
from sglang.srt.model_executor.model_runner import ModelRunner
from sglang.srt.server_args import ServerArgs
from sglang.srt.speculative.eagle_utils import EAGLEDraftInput
class EAGLEWorker(TpModelWorker):
def __init__(
self,
server_args: ServerArgs,
gpu_id: int,
tp_rank: int,
dp_rank: Optional[int],
nccl_port: int,
target_worker: TpModelWorker,
):
# Do not capture cuda graph in `super().__init__()`
# We will capture it later
backup_disable_cuda_graph = server_args.disable_cuda_graph
server_args.disable_cuda_graph = True
super().__init__(
gpu_id=gpu_id,
tp_rank=tp_rank,
server_args=server_args,
nccl_port=nccl_port,
dp_rank=dp_rank,
is_draft_worker=True,
)
self.target_worker = target_worker
self.server_args = server_args
# Share the embedding and lm_head
embed, head = self.target_worker.model_runner.model.get_embed_and_head()
self.model_runner.model.set_embed_and_head(embed, head)
self.model_runner.server_args.disable_cuda_graph = backup_disable_cuda_graph
self.model_runner.init_cuda_graphs()
def forward_draft_decode(self, batch: ScheduleBatch):
batch.spec_info.prepare_for_decode(batch)
model_worker_batch = batch.get_model_worker_batch()
forward_batch = ForwardBatch.init_new(model_worker_batch, self.model_runner)
forward_batch.spec_info.capture_hidden_mode = CaptureHiddenMode.LAST
logits_output = self.model_runner.forward(forward_batch)
self.capture_for_decode(logits_output, forward_batch)
def forward_draft_extend(self, batch: ScheduleBatch):
self._swap_mem_pool(batch, self.model_runner)
batch.spec_info.prepare_for_extend(batch)
model_worker_batch = batch.get_model_worker_batch()
forward_batch = ForwardBatch.init_new(model_worker_batch, self.model_runner)
forward_batch.spec_info.capture_hidden_mode = CaptureHiddenMode.LAST
logits_output = self.model_runner.forward(forward_batch)
self.capture_for_decode(logits_output, forward_batch)
self._swap_mem_pool(batch, self.target_worker.model_runner)
def forward_batch_speculative_generation(self, batch: ScheduleBatch):
if batch.forward_mode.is_decode():
prev_spec_info = batch.spec_info
self._swap_mem_pool(batch, self.model_runner)
for i in range(self.server_args.speculative_num_steps):
self.forward_draft_decode(batch)
batch.spec_info.clear_draft_cache(batch)
self._swap_mem_pool(batch, self.target_worker.model_runner)
(
next_draft_input,
logits_output,
verified_id,
self.finish_extend_len,
model_worker_batch,
) = self.verify(batch)
next_draft_input.init(self.server_args)
batch.spec_info = next_draft_input
# if it is None, means all requsets are finished
if batch.spec_info.verified_id is not None:
self.forward_extend_after_decode(batch)
batch.spec_info = prev_spec_info
return logits_output, verified_id, model_worker_batch, next_draft_input
else:
spec_info = EAGLEDraftInput()
spec_info.init(self.server_args)
model_worker_batch = batch.get_model_worker_batch()
model_worker_batch.spec_info = spec_info
spec_info.capture_hidden_mode = CaptureHiddenMode.FULL
logits_output, next_token_ids = self.target_worker.forward_batch_generation(
model_worker_batch
)
model_worker_batch.spec_info.verified_id = next_token_ids
model_worker_batch.spec_info.hidden_states = logits_output.hidden_states
batch.spec_info = spec_info
self.forward_draft_extend(batch)
batch.spec_info = None
return logits_output, next_token_ids, model_worker_batch, spec_info
def verify(self, batch: ScheduleBatch):
verify_input = batch.spec_info.prepare_for_verify(batch)
batch.forward_mode = ForwardMode.TARGET_VERIFY
verify_input.prepare_for_verify(batch)
batch.spec_info = verify_input
batch.spec_info.capture_hidden_mode = CaptureHiddenMode.FULL
model_worker_batch = batch.get_model_worker_batch()
logits_output, _ = self.target_worker.forward_batch_generation(
model_worker_batch, skip_sample=True
)
verify_input.hidden_states = logits_output.hidden_states
res = verify_input.verify(batch, logits_output)
batch.forward_mode = ForwardMode.DECODE
return res + (model_worker_batch,)
def _swap_mem_pool(self, batch: ScheduleBatch, runner: ModelRunner):
batch.token_to_kv_pool = runner.token_to_kv_pool
batch.req_to_token_pool = runner.req_to_token_pool
def forward_extend_after_decode(self, batch: ScheduleBatch):
self._swap_mem_pool(batch, self.model_runner)
batch.forward_mode = ForwardMode.DRAFT_EXTEND
if batch.spec_info.has_finished:
index = batch.spec_info.unfinished_index
seq_lens = batch.seq_lens
batch.seq_lens = batch.seq_lens[index]
batch.spec_info.prepare_extend_after_decode(batch)
model_worker_batch = batch.get_model_worker_batch()
forward_batch = ForwardBatch.init_new(model_worker_batch, self.model_runner)
forward_batch.spec_info.capture_hidden_mode = CaptureHiddenMode.LAST
logits_output = self.model_runner.forward(forward_batch)
batch.spec_info.hidden_states = logits_output.hidden_states
self.capture_for_decode(logits_output, forward_batch)
batch.forward_mode = ForwardMode.DECODE
if batch.spec_info.has_finished:
batch.seq_lens = seq_lens
self._swap_mem_pool(batch, self.target_worker.model_runner)
def capture_for_decode(self, logits_output, forward_batch):
if isinstance(logits_output, LogitsProcessorOutput):
logits = logits_output.next_token_logits
sample_output = torch.softmax(
logits, dim=-1
) # TODO: Support more sampling method @kavioyu
forward_batch.spec_info.capture_for_decode(
sample_output, logits_output.hidden_states, forward_batch.forward_mode
)
# Don't support prefix share now.
def finish_request(self, reqs: Union[Req, List[Req]]):
if not isinstance(reqs, List):
reqs = [reqs]
for req in reqs:
req_len = (
len(req.origin_input_ids)
+ len(req.output_ids)
- self.finish_extend_len[req.rid]
- 1
)
kv_indices = self.model_runner.req_to_token_pool.req_to_token[
req.req_pool_idx
][:req_len]
self.model_runner.token_to_kv_pool.free(kv_indices)
self.model_runner.req_to_token_pool.free(req.req_pool_idx)
......@@ -13,6 +13,7 @@ suites = {
"test_abort.py",
"test_chunked_prefill.py",
"test_double_sparsity.py",
"test_eagle_infer.py",
"test_embedding_openai_server.py",
"test_eval_accuracy_mini.py",
"test_get_weights_by_name.py",
......
import unittest
import sglang as sgl
class TestEAGLEEngine(unittest.TestCase):
def test_eagle_accuracy(self):
prompt = "Today is a sunny day and I like"
target_model_path = "meta-llama/Llama-2-7b-chat-hf"
speculative_draft_model_path = "lmzheng/sglang-EAGLE-llama2-chat-7B"
sampling_params = {"temperature": 0, "max_new_tokens": 8}
engine = sgl.Engine(
model_path=target_model_path,
speculative_draft_model_path=speculative_draft_model_path,
speculative_algorithm="EAGLE",
speculative_num_steps=3,
speculative_eagle_topk=4,
speculative_num_draft_tokens=16,
)
out1 = engine.generate(prompt, sampling_params)["text"]
engine.shutdown()
engine = sgl.Engine(model_path=target_model_path)
out2 = engine.generate(prompt, sampling_params)["text"]
engine.shutdown()
print("==== Answer 1 ====")
print(out1)
print("==== Answer 2 ====")
print(out2)
self.assertEqual(out1, out2)
if __name__ == "__main__":
unittest.main()
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment