Unverified Commit 7577f0e4 authored by Cao E's avatar Cao E Committed by GitHub
Browse files

Add graph runner support with torch compile on CPU (#7843)

parent 8cda5a62
......@@ -70,7 +70,7 @@ jobs:
- name: Run unit tests
if: steps.check_amx.outcome == 'success'
timeout-minutes: 30
timeout-minutes: 36
run: |
docker exec -w /sglang-checkout/ ci_sglang_xeon \
bash -c "cd ./test/srt && python3 run_suite.py --suite per-commit-cpu"
......
......@@ -134,7 +134,12 @@ Notes:
export SGLANG_CPU_OMP_THREADS_BIND="0-39|43-82|86-125|128-167|171-210|214-253"
```
3. A warmup step is automatically triggered when the service is started.
3. For optimizing decoding with torch.compile, please add the flag `--enable-torch-compile`.
To specify the maximum batch size when using torch compile, set the flag `--torch-compile-max-bs`.
For example, `--enable-torch-compile --torch-compile-max-bs 4` means using torch compile and setting the
maximum batch size to 4.
4. A warmup step is automatically triggered when the service is started.
The server is ready when you see the log `The server is fired up and ready to roll!`.
## Benchmarking with Requests
......
......@@ -64,6 +64,9 @@ class GraphCaptureContext:
TensorMetadata = namedtuple("TensorMetadata", ["device", "dtype", "size"])
# use int value instead of ReduceOp.SUM to support torch compile
REDUCE_OP_SUM = int(torch.distributed.ReduceOp.SUM)
def _split_tensor_dict(
tensor_dict: Dict[str, Union[torch.Tensor, Any]]
......@@ -489,9 +492,7 @@ class GroupCoordinator:
if input_.is_cpu:
if is_shm_available(input_.dtype, self.world_size, self.local_size):
torch.ops.sgl_kernel.shm_allreduce(
input_, torch.distributed.ReduceOp.SUM
)
torch.ops.sgl_kernel.shm_allreduce(input_, REDUCE_OP_SUM)
else:
torch.distributed.all_reduce(input_, group=self.device_group)
return input_
......
......@@ -49,6 +49,9 @@ class IntelAMXAttnBackend(AttentionBackend):
max_extend_len = torch.max(forward_batch.extend_seq_lens).item()
self.forward_metadata = (attn_logits, max_extend_len)
def get_graph_seq_len_fill_value(self):
return 1
def forward_extend(
self,
q,
......
......@@ -352,6 +352,9 @@ class Fp8LinearMethod(LinearMethodBase):
_is_cpu_amx_available
), "Fp8LinearMethod on CPU requires that CPU has AMX support"
_amx_process_weight_after_loading(layer, ["weight"])
layer.weight_scale_inv = torch.nn.Parameter(
layer.weight_scale_inv.data, requires_grad=False
)
return
else:
weight, weight_scale = layer.weight.data, layer.weight_scale_inv.data
......
......@@ -343,9 +343,8 @@ class W8A8Int8LinearMethod(LinearMethodBase):
_is_cpu_amx_available
), "W8A8Int8LinearMethod on CPU requires that CPU has AMX support"
_amx_process_weight_after_loading(layer, ["weight"])
return
layer.weight = Parameter(layer.weight.t(), requires_grad=False)
else:
layer.weight = Parameter(layer.weight.t(), requires_grad=False)
layer.weight_scale = Parameter(layer.weight_scale.data, requires_grad=False)
def create_weights(
......@@ -486,10 +485,9 @@ class W8A8Int8MoEMethod(FusedMoEMethodBase):
_is_cpu_amx_available
), "W8A8Int8MoEMethod on CPU requires that CPU has AMX support"
_amx_process_weight_after_loading(layer, ["w13_weight", "w2_weight"])
return
layer.w13_weight = Parameter(layer.w13_weight, requires_grad=False)
layer.w2_weight = Parameter(layer.w2_weight, requires_grad=False)
else:
layer.w13_weight = Parameter(layer.w13_weight, requires_grad=False)
layer.w2_weight = Parameter(layer.w2_weight, requires_grad=False)
layer.w13_weight_scale = Parameter(
layer.w13_weight_scale.data, requires_grad=False
)
......
......@@ -414,7 +414,7 @@ class Scheduler(
f"max_prefill_tokens={self.max_prefill_tokens}, "
f"max_running_requests={self.max_running_requests}, "
f"context_len={self.model_config.context_len}, "
f"available_gpu_mem={avail_mem:.2f} GB"
f"{'available_cpu_mem' if self.device == 'cpu' else 'available_gpu_mem'}={avail_mem:.2f} GB"
)
# Init memory pool and cache
......@@ -2252,10 +2252,9 @@ class Scheduler(
"token_capacity": int(self.max_total_num_tokens),
}
if not _is_cpu:
ret["memory_usage"]["cuda_graph"] = round(
self.tp_worker.worker.model_runner.cuda_graph_mem_usage, 2
)
ret["memory_usage"]["graph"] = round(
self.tp_worker.worker.model_runner.graph_mem_usage, 2
)
if not self.spec_algorithm.is_none() and self.cum_spec_accept_count > 0:
ret["avg_spec_accept_length"] = (
......
......@@ -214,7 +214,7 @@ class SchedulerMetricsMixin:
msg += f"#retracted-req: {len(self.disagg_decode_prealloc_queue.retracted_queue)}, "
msg += (
f"cuda graph: {can_run_cuda_graph}, "
f"{'cpu graph' if self.device == 'cpu' else 'cuda graph'}: {can_run_cuda_graph}, "
f"gen throughput (token/s): {self.last_gen_throughput:.2f}, "
f"#queue-req: {len(self.waiting_queue)}, "
)
......
# Copyright 2023-2024 SGLang Team
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""Run the model with cpu torch compile."""
# The implementation of CPUGraphRunner follows the CudaGraphRunner
from __future__ import annotations
import logging
from contextlib import contextmanager
from typing import TYPE_CHECKING, Callable, Optional, Union
import psutil
import torch
import tqdm
from sglang.srt.distributed import get_tensor_model_parallel_rank
from sglang.srt.distributed.parallel_state import GroupCoordinator
from sglang.srt.layers.logits_processor import LogitsProcessorOutput
from sglang.srt.model_executor.forward_batch_info import (
CaptureHiddenMode,
ForwardBatch,
ForwardMode,
PPProxyTensors,
)
from sglang.srt.patch_torch import monkey_patch_torch_compile
from sglang.srt.speculative.spec_info import SpeculativeAlgorithm
from sglang.srt.utils import (
log_info_on_rank0,
require_attn_tp_gather,
require_gathered_buffer,
require_mlp_sync,
require_mlp_tp_gather,
)
logger = logging.getLogger(__name__)
if TYPE_CHECKING:
from sglang.srt.model_executor.model_runner import ModelRunner
@contextmanager
def patch_model(
model: torch.nn.Module,
enable_compile: bool,
num_tokens: int,
tp_group: GroupCoordinator,
):
"""Patch the model to make it compatible with torch.compile"""
backup_ca_comm = None
try:
if enable_compile:
backup_ca_comm = tp_group.ca_comm
# Use custom-allreduce here.
# We found the custom allreduce is much faster than the built-in allreduce in torch,
# even with ENABLE_INTRA_NODE_COMM=1.
# tp_group.ca_comm = None
yield torch.compile(
torch.no_grad()(model.forward),
dynamic=False,
)
else:
yield model.forward
finally:
if enable_compile:
tp_group.ca_comm = backup_ca_comm
def set_torch_compile_config():
import torch._dynamo.config
import torch._inductor.config
torch._inductor.config.fx_graph_cache = True # Experimental feature to reduce compilation times, will be on by default in future
torch._inductor.config.freezing = True
torch._dynamo.config.accumulated_cache_size_limit = 1024
if hasattr(torch._dynamo.config, "cache_size_limit"):
torch._dynamo.config.cache_size_limit = 1024
monkey_patch_torch_compile()
def get_batch_sizes_to_capture(model_runner: ModelRunner):
server_args = model_runner.server_args
# cpu torch compile only speeds up decoding by
# reducing python overhead when bs is small
capture_bs = list(range(1, 17))
capture_bs = [bs for bs in capture_bs if bs <= server_args.torch_compile_max_bs]
capture_bs = [bs for bs in capture_bs if bs <= model_runner.req_to_token_pool.size]
capture_bs = list(sorted(set(capture_bs)))
assert len(capture_bs) > 0 and capture_bs[0] > 0, f"{capture_bs=}"
return capture_bs
def register_fake_ops():
"""
Registers fake/meta implementations for all custom sgl_kernel CPU operators
using torch.library.register_fake to support torch.compile
"""
none_return_ops = [
"shm_allreduce",
"bmm_cpu",
"fused_add_rmsnorm_cpu",
"decode_attention_cpu",
"extend_attention_cpu",
]
for op in none_return_ops:
@torch.library.register_fake(f"sgl_kernel::{op}")
def _(*args, **kwargs):
return
for op in [
"rmsnorm_cpu",
"l2norm_cpu",
"fused_experts_cpu",
"shared_expert_cpu",
]:
@torch.library.register_fake(f"sgl_kernel::{op}")
def _(input, *args, **kwargs):
return torch.empty_like(input)
@torch.library.register_fake("sgl_kernel::qkv_proj_with_rope")
def _(
hidden_states,
q_a_proj_weight,
q_b_proj_weight,
kv_a_proj_weight,
w_kc,
q_a_layernorm_weight,
kv_a_layernorm_weight,
positions,
cos_sin_cache,
eps,
use_int8_w8a8,
use_fp8_w8a16,
q_a_proj_scale,
q_b_proj_scale,
kv_a_proj_scale,
is_vnni,
block_size,
):
num_seqs = hidden_states.shape[0]
num_heads = w_kc.shape[0]
kv_lora_rank = w_kc.shape[1]
qk_rope_head_dim = kv_a_proj_weight.shape[0] - kv_lora_rank
q_input = torch.empty(
num_seqs,
num_heads,
kv_lora_rank + qk_rope_head_dim,
dtype=hidden_states.dtype,
device=hidden_states.device,
)
k_input = torch.empty(
num_seqs,
1,
kv_lora_rank + qk_rope_head_dim,
dtype=hidden_states.dtype,
device=hidden_states.device,
)
v_input = k_input.narrow(-1, 0, kv_lora_rank)
return q_input, k_input, v_input
@torch.library.register_fake("sgl_kernel::rotary_embedding_cpu")
def _(positions, query, key, head_size, cos_sin_cache, is_neox):
if query.ndim == 2:
return query, key
else:
return torch.empty_like(query), torch.empty_like(key)
@torch.library.register_fake("sgl_kernel::qkv_proj_with_rope_fused_weight")
def _(
hidden_states,
q_a_proj_weight,
q_b_proj_weight,
w_kc,
q_a_layernorm_weight,
kv_a_layernorm_weight,
positions,
cos_sin_cache,
eps,
use_int8_w8a8,
use_fp8_w8a16,
qkv_a_proj_scale,
q_b_proj_scale,
is_vnni,
block_size,
q_lora_rank,
kv_lora_rank,
qk_rope_head_dim,
):
num_seqs = hidden_states.shape[0]
num_heads = w_kc.shape[0]
kv_lora_rank = w_kc.shape[1]
weight_chunks = torch.split(
q_a_proj_weight, [q_lora_rank, kv_lora_rank + qk_rope_head_dim], dim=0
)
qk_rope_head_dim = weight_chunks[1].shape[0] - kv_lora_rank
q_input = torch.empty(
num_seqs,
num_heads,
kv_lora_rank + qk_rope_head_dim,
dtype=hidden_states.dtype,
device=hidden_states.device,
)
k_input = torch.empty(
num_seqs,
1,
kv_lora_rank + qk_rope_head_dim,
dtype=hidden_states.dtype,
device=hidden_states.device,
)
v_input = k_input.narrow(-1, 0, kv_lora_rank)
return q_input, k_input, v_input
@torch.library.register_fake("sgl_kernel::weight_packed_linear")
def _(x, weight, bias, is_vnni):
return x.new_empty(x.shape[0], weight.shape[0])
@torch.library.register_fake("sgl_kernel::per_token_quant_int8_cpu")
def _(input):
M = input.shape[0]
K = input.shape[1]
Aq = input.new_empty(M, K, dtype=torch.int8)
As = input.new_empty(M, dtype=torch.float32)
return Aq, As
@torch.library.register_fake("sgl_kernel::int8_scaled_mm_cpu")
def _(mat1, mat2, scales1, scales2, bias, out_dtype, is_vnni):
M = mat1.shape[0]
N = mat2.shape[0]
out = mat1.new_empty(M, N, dtype=out_dtype)
return out
@torch.library.register_fake("sgl_kernel::grouped_topk_cpu")
def _(
hidden_states,
gating_output,
topk,
renormalize,
num_expert_group,
topk_group,
num_fused_shared_experts,
routed_scaling_factor,
num_token_non_padded,
):
num_tokens = hidden_states.shape[0]
shape = (num_tokens, topk)
device = hidden_states.device
topk_weights = torch.empty(shape, device=device, dtype=torch.float32)
topk_ids = torch.empty(shape, device=device, dtype=torch.int)
return topk_weights, topk_ids
@torch.library.register_fake("sgl_kernel::biased_grouped_topk_cpu")
def _(
hidden_states,
gating_output,
correction_bias,
topk,
renormalize,
num_expert_group,
topk_group,
num_fused_shared_experts,
routed_scaling_factor,
num_token_non_padded,
):
num_tokens = hidden_states.shape[0]
shape = (num_tokens, topk)
device = hidden_states.device
topk_weights = torch.empty(shape, device=device, dtype=torch.float32)
topk_ids = torch.empty(shape, device=device, dtype=torch.int)
return topk_weights, topk_ids
@torch.library.register_fake("sgl_kernel::topk_sigmoid_cpu")
def _(hidden_states, gating_output, topk, renormalize):
num_tokens = hidden_states.shape[0]
shape = (num_tokens, topk)
return (
torch.empty(shape, device=hidden_states.device, dtype=torch.float),
torch.empty(shape, device=hidden_states.device, dtype=torch.int),
)
@torch.library.register_fake("sgl_kernel::topk_softmax_cpu")
def _(
hidden_states,
gating_output,
topk,
renormalize,
):
num_tokens = hidden_states.shape[0]
shape = (num_tokens, topk)
return (
torch.empty(shape, device=hidden_states.device, dtype=torch.float),
torch.empty(shape, device=hidden_states.device, dtype=torch.int),
)
@torch.library.register_fake("sgl_kernel::silu_and_mul_cpu")
def _(input):
return input.new_empty(input.shape[0], input.shape[1] // 2)
@torch.library.register_fake("sgl_kernel::int8_scaled_mm_with_quant")
def _(
mat1,
mat2,
scales2,
bias,
out_dtype,
is_vnni,
):
M = mat1.shape[0]
N = mat2.shape[0]
return mat1.new_empty(M, N, dtype=out_dtype)
@torch.library.register_fake("sgl_kernel::fp8_scaled_mm_cpu")
def _(
mat1,
mat2,
scales2,
block_size,
bias,
out_dtype,
is_vnni,
):
M = mat1.shape[0]
N = mat2.shape[0]
return mat1.new_empty(M, N, dtype=out_dtype)
# TODO Remove unnecessary settings for CPUGraphRunner.
# Re-abstract the graph runner and restructure CPUGraphRunner to reuse the same logic.
class CPUGraphRunner:
"""A CPUGraphRunner runs the forward pass of a model with cpu torch.compile."""
def __init__(self, model_runner: ModelRunner):
# Parse args
self.model_runner = model_runner
self.device = model_runner.device
self.graphs = {}
self.output_buffers = {}
self.enable_torch_compile = model_runner.server_args.enable_torch_compile
self.disable_padding = model_runner.server_args.disable_cuda_graph_padding
self.is_encoder_decoder = model_runner.model_config.is_encoder_decoder
self.require_gathered_buffer = require_gathered_buffer(model_runner.server_args)
self.require_mlp_tp_gather = require_mlp_tp_gather(model_runner.server_args)
self.require_mlp_sync = require_mlp_sync(model_runner.server_args)
self.require_attn_tp_gather = require_attn_tp_gather(model_runner.server_args)
self.enable_two_batch_overlap = (
model_runner.server_args.enable_two_batch_overlap
)
self.speculative_algorithm = model_runner.server_args.speculative_algorithm
self.enable_profile_cuda_graph = (
model_runner.server_args.enable_profile_cuda_graph
)
self.tp_size = model_runner.server_args.tp_size
self.dp_size = model_runner.server_args.dp_size
self.pp_size = model_runner.server_args.pp_size
self.capture_forward_mode = ForwardMode.DECODE
self.capture_hidden_mode = CaptureHiddenMode.NULL
self.num_tokens_per_bs = 1
# If returning hidden states is enabled, set initial capture hidden mode to full to avoid double-capture on startup
if model_runner.server_args.enable_return_hidden_states:
self.capture_hidden_mode = CaptureHiddenMode.FULL
assert (
not self.model_runner.server_args.enable_lora
), "CPUGraphRunner does not support LoRA yet."
assert (
not self.enable_two_batch_overlap
), "CPUGraphRunner does not support two batch overlap yet."
assert (
not self.require_mlp_tp_gather
), "CPUGraphRunner does not support MLP TP gather yet."
assert (
not self.require_mlp_sync
), "CPUGraphRunner does not support MLP sync yet."
assert (
not self.require_gathered_buffer
), "CPUGraphRunner does not support gathered buffer yet."
assert (
model_runner.spec_algorithm == SpeculativeAlgorithm.NONE
), "CPUGraphRunner does not support speculative inference yet."
# TODO add compile support for encoder-decoder models
assert (
not self.is_encoder_decoder
), "CPUGraphRunner does not support encoder-decoder models yet."
assert self.dp_size == 1, "CPUGraphRunner does not support DP yet."
assert self.pp_size == 1, "CPUGraphRunner does not support PP yet."
# Batch sizes to capture
self.capture_bs = get_batch_sizes_to_capture(model_runner)
log_info_on_rank0(logger, f"Capture cpu graph bs {self.capture_bs}")
# Attention backend
self.max_bs = max(self.capture_bs)
self.max_num_token = self.max_bs * self.num_tokens_per_bs
self.seq_len_fill_value = (
self.model_runner.attn_backend.get_graph_seq_len_fill_value()
)
if self.enable_torch_compile:
register_fake_ops()
set_torch_compile_config()
# Graph inputs
with torch.device(self.device):
self.input_ids = torch.zeros((self.max_num_token,), dtype=torch.int64)
self.req_pool_indices = torch.zeros((self.max_bs,), dtype=torch.int64)
self.seq_lens = torch.full(
(self.max_bs,), self.seq_len_fill_value, dtype=torch.int64
)
self.out_cache_loc = torch.zeros((self.max_num_token,), dtype=torch.int64)
self.positions = torch.zeros((self.max_num_token,), dtype=torch.int64)
self.mrope_positions = torch.zeros((3, self.max_bs), dtype=torch.int64)
self.num_token_non_padded = torch.zeros((1,), dtype=torch.int64)
self.custom_mask = torch.ones(
(
(self.seq_lens.sum().item() + self.max_num_token)
* self.num_tokens_per_bs
),
dtype=torch.bool,
device=self.device,
)
# Capture
try:
self.capture()
except RuntimeError as e:
raise Exception(
f"Capture CPU graph failed: {e}\n{CPU_GRAPH_CAPTURE_FAILED_MSG}"
)
def can_run(self, forward_batch: ForwardBatch):
is_bs_supported = forward_batch.batch_size in self.graphs
requested_capture_hidden_mode = max(
forward_batch.capture_hidden_mode,
(
forward_batch.spec_info.capture_hidden_mode
if getattr(forward_batch.spec_info, "capture_hidden_mode", None)
is not None
else CaptureHiddenMode.NULL
),
)
capture_hidden_mode_matches = (
requested_capture_hidden_mode == CaptureHiddenMode.NULL
or requested_capture_hidden_mode == self.capture_hidden_mode
)
return is_bs_supported and capture_hidden_mode_matches
def capture(self) -> None:
capture_range = (
tqdm.tqdm(list(reversed(self.capture_bs)))
if get_tensor_model_parallel_rank() == 0
else reversed(self.capture_bs)
)
for bs in capture_range:
if get_tensor_model_parallel_rank() == 0:
avail_mem = psutil.virtual_memory().available / (1 << 30)
capture_range.set_description(
f"Capturing batches ({bs=} {avail_mem=:.2f} GB)"
)
with patch_model(
self.model_runner.model,
bs in self.capture_bs,
num_tokens=bs * self.num_tokens_per_bs,
tp_group=self.model_runner.tp_group,
) as forward:
(
graph,
output_buffers,
) = self.capture_one_batch_size(bs, forward)
self.graphs[bs] = graph
self.output_buffers[bs] = output_buffers
def capture_one_batch_size(self, bs: int, forward: Callable):
num_tokens = bs * self.num_tokens_per_bs
# Graph inputs
input_ids = self.input_ids[:num_tokens]
req_pool_indices = self.req_pool_indices[:bs]
seq_lens = self.seq_lens[:bs]
out_cache_loc = self.out_cache_loc[:num_tokens]
positions = self.positions[:num_tokens]
mrope_positions = self.mrope_positions[:, :bs]
self.num_token_non_padded[...] = num_tokens
spec_info = self.get_spec_info(num_tokens)
if self.capture_hidden_mode != CaptureHiddenMode.FULL:
self.capture_hidden_mode = (
spec_info.capture_hidden_mode if spec_info else CaptureHiddenMode.NULL
)
forward_batch = ForwardBatch(
forward_mode=self.capture_forward_mode,
batch_size=bs,
input_ids=input_ids,
req_pool_indices=req_pool_indices,
seq_lens=seq_lens,
req_to_token_pool=self.model_runner.req_to_token_pool,
token_to_kv_pool=self.model_runner.token_to_kv_pool,
attn_backend=self.model_runner.attn_backend,
out_cache_loc=out_cache_loc,
seq_lens_sum=seq_lens.sum().item(),
return_logprob=False,
positions=positions,
mrope_positions=mrope_positions,
spec_algorithm=self.model_runner.spec_algorithm,
spec_info=spec_info,
capture_hidden_mode=self.capture_hidden_mode,
num_token_non_padded=self.num_token_non_padded,
global_forward_mode=self.capture_forward_mode,
)
# Attention backend
self.model_runner.attn_backend.init_forward_metadata(forward_batch)
# Do infernence to avoid setting attr at runtime, e.g.,
# self.attn_mha.kv_b_proj = self.kv_b_proj for full graph compile on CPU
self.model_runner.model.forward(
forward_batch.input_ids,
forward_batch.positions,
forward_batch,
)
# Run and capture
def run_once():
# Clean intermediate result cache for DP attention
forward_batch.dp_local_start_pos = forward_batch.dp_local_num_tokens = None
logits_output_or_pp_proxy_tensors = forward(
input_ids,
forward_batch.positions,
forward_batch,
)
return logits_output_or_pp_proxy_tensors
with torch.no_grad():
for _ in range(2):
self.model_runner.tp_group.barrier()
out = run_once()
return forward, out
def recapture_if_needed(self, forward_batch: ForwardBatch):
# If the required capture_hidden_mode changes, we need to recapture the graph
# These are the different factors that can influence the capture_hidden_mode
capture_hidden_mode_required_by_forward_batch = (
forward_batch.capture_hidden_mode
)
capture_hidden_mode_required_by_spec_info = getattr(
forward_batch.spec_info, "capture_hidden_mode", CaptureHiddenMode.NULL
)
capture_hidden_mode_required_for_returning_hidden_states = (
CaptureHiddenMode.FULL
if self.model_runner.server_args.enable_return_hidden_states
else CaptureHiddenMode.NULL
)
# Determine the highest capture_hidden_mode required
# (If we have FULL, we can emulate LAST or NULL)
# (If we have LAST, we can emulate NULL)
required_capture_hidden_mode = max(
capture_hidden_mode_required_by_forward_batch,
capture_hidden_mode_required_by_spec_info,
capture_hidden_mode_required_for_returning_hidden_states,
)
# If the current hidden mode is no longer aligned with the required hidden mode, we need to set it to what is required and re-capture
if self.capture_hidden_mode != required_capture_hidden_mode:
self.capture_hidden_mode = required_capture_hidden_mode
self.capture()
# TODO add padding support for CPUGraphRunner
def replay(
self,
forward_batch: ForwardBatch,
skip_attn_backend_init: bool = False,
pp_proxy_tensors: Optional[PPProxyTensors] = None,
) -> Union[LogitsProcessorOutput, PPProxyTensors]:
assert (
pp_proxy_tensors is None
), "PPProxyTensors is not supported in CPUGraphRunner yet."
self.recapture_if_needed(forward_batch)
self.model_runner.attn_backend.init_forward_metadata(forward_batch)
output = self.graphs[forward_batch.batch_size](
forward_batch.input_ids,
forward_batch.positions,
forward_batch,
)
return output
def get_spec_info(self, num_tokens: int):
spec_info = None
if self.model_runner.spec_algorithm.is_eagle():
from sglang.srt.speculative.eagle_utils import EagleVerifyInput
if self.model_runner.is_draft_worker:
raise RuntimeError("This should not happen.")
else:
spec_info = EagleVerifyInput(
draft_token=None,
custom_mask=self.custom_mask,
positions=None,
retrive_index=None,
retrive_next_token=None,
retrive_next_sibling=None,
retrive_cum_len=None,
spec_steps=self.model_runner.server_args.speculative_num_steps,
topk=self.model_runner.server_args.speculative_eagle_topk,
draft_token_num=self.model_runner.server_args.speculative_num_draft_tokens,
capture_hidden_mode=CaptureHiddenMode.FULL,
seq_lens_sum=None,
seq_lens_cpu=None,
)
return spec_info
CPU_GRAPH_CAPTURE_FAILED_MSG = (
"Possible solutions:\n"
"1. set --mem-fraction-static to a smaller value (e.g., 0.8 or 0.7)\n"
"2. set --torch-compile-max-bs to a smaller value (e.g., 8)\n"
"3. disable torch compile by not using --enable-torch-compile\n"
"Open an issue on GitHub https://github.com/sgl-project/sglang/issues/new/choose \n"
)
......@@ -132,6 +132,9 @@ class ForwardMode(IntEnum):
or self == ForwardMode.IDLE
)
def is_cpu_graph(self):
return self == ForwardMode.DECODE
def is_dummy_first(self):
return self == ForwardMode.DUMMY_FIRST
......
......@@ -20,6 +20,7 @@ import json
import logging
import os
import time
from collections import defaultdict
from dataclasses import dataclass
from typing import List, Optional, Tuple, Union
......@@ -89,6 +90,7 @@ from sglang.srt.mem_cache.memory_pool import (
ReqToTokenPool,
SWAKVPool,
)
from sglang.srt.model_executor.cpu_graph_runner import CPUGraphRunner
from sglang.srt.model_executor.cuda_graph_runner import CudaGraphRunner
from sglang.srt.model_executor.forward_batch_info import ForwardBatch, PPProxyTensors
from sglang.srt.model_executor.npu_graph_runner import NPUGraphRunner
......@@ -360,12 +362,12 @@ class ModelRunner:
self.init_cublas()
self.init_attention_backend()
self.init_device_graphs()
elif self.device == "npu":
elif self.device in ["npu", "cpu"]:
self.init_attention_backend()
self.init_device_graphs()
else:
self.graph_runner = None
self.cuda_graph_mem_usage = 0
self.graph_mem_usage = 0
self.init_attention_backend()
# auxiliary hidden capture mode. TODO: expose this to server args?
......@@ -608,6 +610,11 @@ class ModelRunner:
# Set local size to hint SGLang to use shared memory based AllReduce
os.environ["LOCAL_SIZE"] = str(self.tp_size)
torch.ops.sgl_kernel.initialize(self.tp_size, self.tp_rank)
@torch.library.register_fake("sgl_kernel::shm_allgather")
def _(data, dim):
return torch.cat([data] * self.tp_size, dim=dim)
else:
logger.warning(
"init_cpu_threads_env and shared memory based AllReduce is disabled since intel amx backend is not available"
......@@ -1619,30 +1626,39 @@ class ModelRunner:
)
def init_device_graphs(self):
"""Capture cuda graphs."""
"""Capture device graphs."""
self.graph_runner = None
self.cuda_graph_mem_usage = 0
self.graph_mem_usage = 0
if not self.is_generation:
# TODO: Currently, cuda graph only captures decode steps, which only exists for generation models
return
if self.server_args.disable_cuda_graph:
if self.device != "cpu" and self.server_args.disable_cuda_graph:
return
if self.device == "cpu" and not self.server_args.enable_torch_compile:
return
tic = time.perf_counter()
before_mem = get_available_gpu_memory(self.device, self.gpu_id)
logger.info(
f"Capture cuda graph begin. This can take up to several minutes. avail mem={before_mem:.2f} GB"
f"Capture {'cpu graph' if self.device == 'cpu' else 'cuda graph'} begin. This can take up to several minutes. avail mem={before_mem:.2f} GB"
)
self.graph_runner = (
CudaGraphRunner(self) if not _is_npu else NPUGraphRunner(self)
graph_runners = defaultdict(
lambda: CudaGraphRunner,
{
"cpu": CPUGraphRunner,
"npu": NPUGraphRunner,
},
)
self.graph_runner = graph_runners[self.device](self)
after_mem = get_available_gpu_memory(self.device, self.gpu_id)
self.cuda_graph_mem_usage = before_mem - after_mem
self.graph_mem_usage = before_mem - after_mem
logger.info(
f"Capture cuda graph end. Time elapsed: {time.perf_counter() - tic:.2f} s. "
f"mem usage={self.cuda_graph_mem_usage:.2f} GB. avail mem={after_mem:.2f} GB."
f"Capture {'cpu graph' if self.device == 'cpu' else 'cuda graph'} end. Time elapsed: {time.perf_counter() - tic:.2f} s. "
f"mem usage={self.graph_mem_usage:.2f} GB. avail mem={after_mem:.2f} GB."
)
def init_threads_binding(self):
......@@ -1787,18 +1803,24 @@ class ModelRunner:
reinit_attn_backend: bool = False,
split_forward_count: int = 1,
) -> Tuple[Union[LogitsProcessorOutput, PPProxyTensors], bool]:
can_run_cuda_graph = bool(
forward_batch.forward_mode.is_cuda_graph()
mode_check = (
forward_batch.forward_mode.is_cpu_graph
if self.device == "cpu"
else forward_batch.forward_mode.is_cuda_graph
)
can_run_graph = bool(
mode_check()
and self.graph_runner
and self.graph_runner.can_run(forward_batch)
)
if can_run_cuda_graph:
if can_run_graph:
ret = self.graph_runner.replay(
forward_batch,
skip_attn_backend_init=skip_attn_backend_init,
pp_proxy_tensors=pp_proxy_tensors,
)
return ret, can_run_cuda_graph
return ret, can_run_graph
# For MLP sync
if forward_batch.global_num_tokens_cpu is not None:
......@@ -1833,7 +1855,7 @@ class ModelRunner:
):
forward_batch.post_forward_mlp_sync_batch(ret)
return ret, can_run_cuda_graph
return ret, can_run_graph
def _preprocess_logits(
self, logits_output: LogitsProcessorOutput, sampling_info: SamplingBatchInfo
......
......@@ -230,8 +230,16 @@ except:
is_intel_amx_backend_available = False
try:
# move torch._C._cpu._is_amx_tile_supported() from cpu_has_amx_support
# to support torch compile
is_amx_tile_supported = torch._C._cpu._is_amx_tile_supported()
except:
is_amx_tile_supported = False
def cpu_has_amx_support():
return torch._C._cpu._is_amx_tile_supported() and is_intel_amx_backend_available
return is_amx_tile_supported and is_intel_amx_backend_available
def use_intel_amx_backend(layer):
......
......@@ -239,7 +239,7 @@ TORCH_LIBRARY_FRAGMENT(sgl_kernel, m) {
m.impl("rmsnorm_cpu", torch::kCPU, &rmsnorm_cpu);
m.def("l2norm_cpu(Tensor input, float eps) -> Tensor");
m.impl("l2norm_cpu", torch::kCPU, &l2norm_cpu);
m.def("fused_add_rmsnorm_cpu(Tensor input, Tensor residual, Tensor weight, float eps) -> ()");
m.def("fused_add_rmsnorm_cpu(Tensor(a!) input, Tensor residual, Tensor weight, float eps) -> ()");
m.impl("fused_add_rmsnorm_cpu", torch::kCPU, &fused_add_rmsnorm_cpu);
// topk
......@@ -262,14 +262,14 @@ TORCH_LIBRARY_FRAGMENT(sgl_kernel, m) {
// decode
m.def(
"decode_attention_cpu(Tensor query, Tensor k_cache, Tensor v_cahce, Tensor output, Tensor key, Tensor value, "
"decode_attention_cpu(Tensor query, Tensor k_cache, Tensor v_cahce, Tensor(a!) output, Tensor key, Tensor value, "
"Tensor loc, Tensor attn_logits, Tensor req_to_token, Tensor req_pool_indices, Tensor seq_lens, float sm_scale, "
"float logit_cap) -> ()");
m.impl("decode_attention_cpu", torch::kCPU, &decode_attention_cpu);
// extend
m.def(
"extend_attention_cpu(Tensor q_extend, Tensor k_extend, Tensor v_extend, Tensor o_extend, Tensor k_buffer, "
"extend_attention_cpu(Tensor q_extend, Tensor k_extend, Tensor v_extend, Tensor(a!) o_extend, Tensor k_buffer, "
"Tensor v_buffer, Tensor req_to_token, Tensor req_pool_indices, Tensor seq_lens, Tensor extend_seq_lens, Tensor "
"extend_start_loc, int max_len_extend, float sm_scale, float logit_cap) -> ()");
m.impl("extend_attention_cpu", torch::kCPU, &extend_attention_cpu);
......@@ -305,7 +305,7 @@ TORCH_LIBRARY_FRAGMENT(sgl_kernel, m) {
m.impl("int8_scaled_mm_with_quant", torch::kCPU, &int8_scaled_mm_with_quant);
// bmm
m.def("bmm_cpu(Tensor out, Tensor mat1, Tensor mat2, bool is_vnni, Tensor? scale) -> ()");
m.def("bmm_cpu(Tensor(a!) out, Tensor mat1, Tensor mat2, bool is_vnni, Tensor? scale) -> ()");
m.impl("bmm_cpu", torch::kCPU, &bmm_cpu);
// moe
......@@ -342,7 +342,7 @@ TORCH_LIBRARY_FRAGMENT(sgl_kernel, m) {
// all reduce
m.def("initialize(int size, int rank) -> ()");
m.def("shm_allreduce(Tensor data, int reduce_op) -> ()");
m.def("shm_allreduce(Tensor(a!) data, int reduce_op) -> ()");
m.impl("shm_allreduce", torch::kCPU, &shm_allreduce);
m.def("shm_allgather(Tensor data, int dim) -> Tensor");
m.impl("shm_allgather", torch::kCPU, &shm_allgather);
......
......@@ -276,6 +276,7 @@ suite_xeon = {
TestFile("cpu/test_shared_expert.py"),
TestFile("cpu/test_topk.py"),
TestFile("test_intel_amx_attention_backend.py"),
TestFile("test_cpu_graph.py"),
],
}
......
"""
Usage:
python3 -m unittest test_cpu_graph.TestCPUGraph.test_mmlu_torch_compile_cpu
"""
import copy
import os
import unittest
from types import SimpleNamespace
from test_intel_amx_attention_backend import intel_amx_benchmark
from sglang.srt.utils import get_cpu_ids_by_node, kill_process_tree
from sglang.test.run_eval import run_eval
from sglang.test.test_utils import (
DEFAULT_MLA_MODEL_NAME_FOR_TEST,
DEFAULT_TIMEOUT_FOR_SERVER_LAUNCH,
DEFAULT_URL_FOR_TEST,
CustomTestCase,
is_in_ci,
popen_launch_server,
)
class TestCPUGraph(CustomTestCase):
@intel_amx_benchmark(
extra_args=[
"--batch-size",
"1",
"--mem-fraction-static",
"0.05",
"--enable-torch-compile",
"--torch-compile-max-bs",
"1",
],
min_throughput=10,
)
def test_latency_torch_compile_cpu(self):
return DEFAULT_MLA_MODEL_NAME_FOR_TEST
def test_mmlu_torch_compile_cpu(self):
model = DEFAULT_MLA_MODEL_NAME_FOR_TEST
base_url = DEFAULT_URL_FOR_TEST
cpu_ids_by_node = get_cpu_ids_by_node()
n_numa_node = len(cpu_ids_by_node)
env = copy.deepcopy(os.environ)
env["SGLANG_CPU_OMP_THREADS_BIND"] = "all"
process = popen_launch_server(
model,
base_url,
timeout=DEFAULT_TIMEOUT_FOR_SERVER_LAUNCH,
other_args=[
"--attention-backend",
"intel_amx",
"--mem-fraction-static",
"0.05",
"--disable-radix",
"--trust-remote-code",
"--disable-overlap-schedule",
"--enable-torch-compile",
"--torch-compile-max-bs",
"1",
"--tp",
f"{n_numa_node}",
],
env=env,
)
try:
args = SimpleNamespace(
base_url=base_url,
model=model,
eval_name="mmlu",
num_examples=64,
num_threads=32,
)
metrics = run_eval(args)
if is_in_ci():
self.assertGreater(metrics["score"], 0.45)
finally:
kill_process_tree(process.pid)
if __name__ == "__main__":
unittest.main()
......@@ -3,7 +3,6 @@ Usage:
python3 -m unittest test_intel_amx_attention_backend.TestIntelAMXAttnBackend.test_mmlu
"""
import os
import unittest
from functools import wraps
from types import SimpleNamespace
......@@ -35,8 +34,6 @@ def intel_amx_benchmark(extra_args=None, min_throughput=None):
"intel_amx",
"--disable-radix",
"--trust-remote-code",
"--batch-size",
"4",
]
full_args = common_args + (extra_args or [])
......@@ -60,28 +57,33 @@ def intel_amx_benchmark(extra_args=None, min_throughput=None):
class TestIntelAMXAttnBackend(CustomTestCase):
@intel_amx_benchmark(min_throughput=10)
@intel_amx_benchmark(extra_args=["--batch-size", "4"], min_throughput=10)
def test_latency_mla_model(self):
return DEFAULT_MLA_MODEL_NAME_FOR_TEST
@intel_amx_benchmark(min_throughput=40)
@intel_amx_benchmark(extra_args=["--batch-size", "4"], min_throughput=40)
def test_latency_default_model(self):
return DEFAULT_MODEL_NAME_FOR_TEST
@intel_amx_benchmark(min_throughput=150)
@intel_amx_benchmark(extra_args=["--batch-size", "4"], min_throughput=150)
def test_latency_fp8_qwen(self):
return DEFAULT_MODEL_NAME_FOR_TEST_QWEN_FP8
@intel_amx_benchmark(min_throughput=50)
@intel_amx_benchmark(extra_args=["--batch-size", "4"], min_throughput=50)
def test_latency_fp8_moe_model(self):
return DEFAULT_MODEL_NAME_FOR_TEST_FP8_WITH_MOE
@intel_amx_benchmark(extra_args=["--quantization", "w8a8_int8"], min_throughput=100)
@intel_amx_benchmark(
extra_args=["--batch-size", "4", "--quantization", "w8a8_int8"],
min_throughput=100,
)
def test_latency_w8a8_default_model(self):
return DEFAULT_MODEL_NAME_FOR_TEST_W8A8
@intel_amx_benchmark(
extra_args=[
"--batch-size",
"4",
"--quantization",
"w8a8_int8",
"--mem-fraction-static",
......
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment