"tests/python/vscode:/vscode.git/clone" did not exist on "a6505e86a4c2d14997e5ea2b728d349d904a6343"
Unverified Commit 679ebcbb authored by Liangsheng Yin's avatar Liangsheng Yin Committed by GitHub
Browse files

Deepseek v2 support (#693)

parent 5bd06b45
...@@ -73,7 +73,7 @@ def get_context_length(config): ...@@ -73,7 +73,7 @@ def get_context_length(config):
rope_scaling = getattr(config, "rope_scaling", None) rope_scaling = getattr(config, "rope_scaling", None)
if rope_scaling: if rope_scaling:
rope_scaling_factor = config.rope_scaling["factor"] rope_scaling_factor = config.rope_scaling["factor"]
if config.rope_scaling["rope_type"] == "llama3": if config.rope_scaling.get("rope_type", None) == "llama3":
rope_scaling_factor = 1 rope_scaling_factor = 1
else: else:
rope_scaling_factor = 1 rope_scaling_factor = 1
......
...@@ -95,7 +95,7 @@ class ModelRunner: ...@@ -95,7 +95,7 @@ class ModelRunner:
# Load the model and create memory pool # Load the model and create memory pool
self.load_model() self.load_model()
self.init_memory_pool(total_gpu_memory) self.init_memory_pool(total_gpu_memory, server_args.max_num_reqs)
self.init_cublas() self.init_cublas()
self.init_flash_infer() self.init_flash_infer()
...@@ -176,7 +176,7 @@ class ModelRunner: ...@@ -176,7 +176,7 @@ class ModelRunner:
max_num_token = int(rest_memory * (1 << 30) // cell_size) max_num_token = int(rest_memory * (1 << 30) // cell_size)
return max_num_token return max_num_token
def init_memory_pool(self, total_gpu_memory): def init_memory_pool(self, total_gpu_memory, max_num_reqs=None):
self.max_total_num_tokens = self.profile_max_num_token(total_gpu_memory) self.max_total_num_tokens = self.profile_max_num_token(total_gpu_memory)
if self.max_total_num_tokens <= 0: if self.max_total_num_tokens <= 0:
...@@ -184,11 +184,14 @@ class ModelRunner: ...@@ -184,11 +184,14 @@ class ModelRunner:
"Not enough memory. Please try to increase --mem-fraction-static." "Not enough memory. Please try to increase --mem-fraction-static."
) )
self.req_to_token_pool = ReqToTokenPool( if max_num_reqs is None:
max( max_num_reqs = max(
int(self.max_total_num_tokens / self.model_config.context_len * 512), int(self.max_total_num_tokens / self.model_config.context_len * 512),
2048, 2048,
), )
self.req_to_token_pool = ReqToTokenPool(
max_num_reqs,
self.model_config.context_len + 8, self.model_config.context_len + 8,
) )
self.token_to_kv_pool = TokenToKVPool( self.token_to_kv_pool = TokenToKVPool(
......
...@@ -36,6 +36,11 @@ class ModelConfig: ...@@ -36,6 +36,11 @@ class ModelConfig:
"head_dim", "head_dim",
self.hf_config.hidden_size // self.hf_config.num_attention_heads, self.hf_config.hidden_size // self.hf_config.num_attention_heads,
) )
# FIXME: temporary special judge for deepseek v2 MLA architecture
if "DeepseekV2ForCausalLM" in self.hf_config.architectures:
self.head_dim = 256
self.num_attention_heads = self.hf_config.num_attention_heads self.num_attention_heads = self.hf_config.num_attention_heads
self.num_key_value_heads = getattr(self.hf_config, "num_key_value_heads", None) self.num_key_value_heads = getattr(self.hf_config, "num_key_value_heads", None)
......
# Adapted from:
# https://github.com/vllm-project/vllm/blob/fb6af8bc086328ca6659e72d11ffd4309ce4de22/vllm/model_executor/models/deepseek_v2.py
"""Inference-only DeepseekV2 model."""
from typing import Any, Dict, Iterable, Optional, Tuple
import torch
from torch import nn
from transformers import PretrainedConfig
from vllm.config import CacheConfig
from vllm.distributed import (
get_tensor_model_parallel_world_size,
tensor_model_parallel_all_reduce,
)
from vllm.model_executor.layers.activation import SiluAndMul
from vllm.model_executor.layers.fused_moe import FusedMoE
from vllm.model_executor.layers.layernorm import RMSNorm
from vllm.model_executor.layers.linear import (
ColumnParallelLinear,
MergedColumnParallelLinear,
ReplicatedLinear,
RowParallelLinear,
)
from vllm.model_executor.layers.quantization.base_config import QuantizationConfig
from vllm.model_executor.layers.rotary_embedding import get_rope
from vllm.model_executor.layers.vocab_parallel_embedding import (
ParallelLMHead,
VocabParallelEmbedding,
)
from vllm.model_executor.model_loader.weight_utils import default_weight_loader
from sglang.srt.layers.logits_processor import LogitsProcessor
from sglang.srt.layers.radix_attention import RadixAttention
from sglang.srt.managers.controller.model_runner import InputMetadata
class DeepseekV2MLP(nn.Module):
def __init__(
self,
hidden_size: int,
intermediate_size: int,
hidden_act: str,
quant_config: Optional[QuantizationConfig] = None,
reduce_results: bool = True,
) -> None:
super().__init__()
self.gate_up_proj = MergedColumnParallelLinear(
hidden_size, [intermediate_size] * 2, bias=False, quant_config=quant_config
)
self.down_proj = RowParallelLinear(
intermediate_size,
hidden_size,
bias=False,
quant_config=quant_config,
reduce_results=reduce_results,
)
if hidden_act != "silu":
raise ValueError(
f"Unsupported activation: {hidden_act}. "
"Only silu is supported for now."
)
self.act_fn = SiluAndMul()
def forward(self, x):
gate_up, _ = self.gate_up_proj(x)
x = self.act_fn(gate_up)
x, _ = self.down_proj(x)
return x
class DeepseekV2MoE(nn.Module):
def __init__(
self,
config: PretrainedConfig,
quant_config: Optional[QuantizationConfig] = None,
):
super().__init__()
self.tp_size = get_tensor_model_parallel_world_size()
self.routed_scaling_factor = config.routed_scaling_factor
self.n_shared_experts = config.n_shared_experts
self.routed_scaling_factor = config.routed_scaling_factor
if self.tp_size > config.n_routed_experts:
raise ValueError(
f"Tensor parallel size {self.tp_size} is greater than "
f"the number of experts {config.n_routed_experts}."
)
if config.hidden_act != "silu":
raise ValueError(
f"Unsupported activation: {config.hidden_act}. "
"Only silu is supported for now."
)
self.experts = FusedMoE(
num_experts=config.n_routed_experts,
top_k=config.num_experts_per_tok,
hidden_size=config.hidden_size,
intermediate_size=config.moe_intermediate_size,
reduce_results=False,
renormalize=config.norm_topk_prob,
quant_config=quant_config,
use_grouped_topk=True,
num_expert_group=config.n_group,
topk_group=config.topk_group,
)
self.gate = ReplicatedLinear(
config.hidden_size, config.n_routed_experts, bias=False, quant_config=None
)
if config.n_shared_experts is not None:
intermediate_size = config.moe_intermediate_size * config.n_shared_experts
self.shared_experts = DeepseekV2MLP(
hidden_size=config.hidden_size,
intermediate_size=intermediate_size,
hidden_act=config.hidden_act,
quant_config=quant_config,
reduce_results=False,
)
def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
num_tokens, hidden_dim = hidden_states.shape
hidden_states = hidden_states.view(-1, hidden_dim)
if self.n_shared_experts is not None:
shared_output = self.shared_experts(hidden_states)
# router_logits: (num_tokens, n_experts)
router_logits, _ = self.gate(hidden_states)
final_hidden_states = (
self.experts(hidden_states=hidden_states, router_logits=router_logits)
* self.routed_scaling_factor
)
if shared_output is not None:
final_hidden_states = final_hidden_states + shared_output
if self.tp_size > 1:
final_hidden_states = tensor_model_parallel_all_reduce(final_hidden_states)
return final_hidden_states.view(num_tokens, hidden_dim)
def yarn_get_mscale(scale: float = 1, mscale: float = 1) -> float:
import math
if scale <= 1:
return 1.0
return 0.1 * mscale * math.log(scale) + 1.0
class DeepseekV2Attention(nn.Module):
def __init__(
self,
config: PretrainedConfig,
hidden_size: int,
num_heads: int,
qk_nope_head_dim: int,
qk_rope_head_dim: int,
v_head_dim: int,
q_lora_rank: int,
kv_lora_rank: int,
rope_theta: float = 10000,
rope_scaling: Optional[Dict[str, Any]] = None,
max_position_embeddings: int = 8192,
cache_config: Optional[CacheConfig] = None,
quant_config: Optional[QuantizationConfig] = None,
layer_id=None,
) -> None:
super().__init__()
self.layer_id = layer_id
self.hidden_size = hidden_size
self.qk_nope_head_dim = qk_nope_head_dim
self.qk_rope_head_dim = qk_rope_head_dim
self.qk_head_dim = qk_nope_head_dim + qk_rope_head_dim
self.v_head_dim = v_head_dim
self.q_lora_rank = q_lora_rank
self.kv_lora_rank = kv_lora_rank
self.num_heads = num_heads
tp_size = get_tensor_model_parallel_world_size()
assert num_heads % tp_size == 0
self.num_local_heads = num_heads // tp_size
self.scaling = self.qk_head_dim**-0.5
self.rope_theta = rope_theta
self.max_position_embeddings = max_position_embeddings
if self.q_lora_rank is not None:
self.q_a_proj = ReplicatedLinear(
self.hidden_size,
self.q_lora_rank,
bias=False,
quant_config=quant_config,
)
self.q_a_layernorm = RMSNorm(self.q_lora_rank, eps=config.rms_norm_eps)
self.q_b_proj = ColumnParallelLinear(
q_lora_rank,
self.num_heads * self.qk_head_dim,
bias=False,
quant_config=quant_config,
)
else:
self.q_proj = ColumnParallelLinear(
self.hidden_size,
self.num_heads * self.qk_head_dim,
bias=False,
quant_config=quant_config,
)
self.kv_a_proj_with_mqa = ReplicatedLinear(
self.hidden_size,
self.kv_lora_rank + self.qk_rope_head_dim,
bias=False,
quant_config=quant_config,
)
self.kv_a_layernorm = RMSNorm(self.kv_lora_rank, eps=config.rms_norm_eps)
self.kv_b_proj = ColumnParallelLinear(
self.kv_lora_rank,
self.num_heads * (self.qk_nope_head_dim + self.v_head_dim),
bias=False,
quant_config=quant_config,
)
# O projection.
self.o_proj = RowParallelLinear(
self.num_heads * self.v_head_dim,
self.hidden_size,
bias=False,
quant_config=quant_config,
)
rope_scaling["type"] = "deepseek_yarn"
self.rotary_emb = get_rope(
qk_rope_head_dim,
rotary_dim=qk_rope_head_dim,
max_position=max_position_embeddings,
base=rope_theta,
rope_scaling=rope_scaling,
is_neox_style=False,
)
if rope_scaling:
mscale_all_dim = rope_scaling.get("mscale_all_dim", False)
scaling_factor = rope_scaling["factor"]
mscale = yarn_get_mscale(scaling_factor, float(mscale_all_dim))
self.scaling = self.scaling * mscale * mscale
# self.attn = Attention(self.num_heads,
# self.qk_head_dim,
# self.scaling,
# num_kv_heads=self.num_heads)
# TODO, support head_size 192
self.attn = RadixAttention(
self.num_local_heads,
256,
self.scaling,
num_kv_heads=self.num_local_heads,
layer_id=layer_id,
)
def forward(
self,
positions: torch.Tensor,
hidden_states: torch.Tensor,
input_metadata: InputMetadata,
) -> torch.Tensor:
if self.q_lora_rank is not None:
q = self.q_a_proj(hidden_states)[0]
q = self.q_a_layernorm(q)
q = self.q_b_proj(q)[0].view(-1, self.num_local_heads, self.qk_head_dim)
else:
q = self.q_proj(hidden_states)[0].view(
-1, self.num_local_heads, self.qk_head_dim
)
q_nope, q_pe = q.split([self.qk_nope_head_dim, self.qk_rope_head_dim], dim=-1)
latent_cache = self.kv_a_proj_with_mqa(hidden_states)[0]
kv_a, _ = latent_cache.split([self.kv_lora_rank, self.qk_rope_head_dim], dim=-1)
latent_cache = latent_cache.unsqueeze(1)
kv_a = self.kv_a_layernorm(kv_a.contiguous())
kv = self.kv_b_proj(kv_a)[0]
kv = kv.view(-1, self.num_local_heads, self.qk_nope_head_dim + self.v_head_dim)
k_nope, v = kv.split([self.qk_nope_head_dim, self.v_head_dim], dim=-1)
k_pe = latent_cache[:, :, self.kv_lora_rank :]
q_pe, k_pe = self.rotary_emb(positions, q_pe, k_pe)
q[..., self.qk_nope_head_dim :] = q_pe
k = torch.empty_like(q)
k[..., : self.qk_nope_head_dim] = k_nope
k[..., self.qk_nope_head_dim :] = k_pe
q = torch.nn.functional.pad(q, [0, 256 - self.qk_head_dim], value=0).view(
-1, self.num_local_heads * 256
)
k = torch.nn.functional.pad(k, [0, 256 - self.qk_head_dim], value=0).view(
-1, self.num_local_heads * 256
)
v = torch.nn.functional.pad(v, [0, 256 - self.v_head_dim], value=0).view(
-1, self.num_local_heads * 256
)
attn_output = self.attn(q, k, v, input_metadata)
attn_output = attn_output.view(-1, self.num_local_heads, 256)[
..., : self.v_head_dim
].reshape(-1, self.num_local_heads * self.v_head_dim)
output, _ = self.o_proj(attn_output)
return output
class DeepseekV2DecoderLayer(nn.Module):
def __init__(
self,
config: PretrainedConfig,
layer_id: int,
cache_config: Optional[CacheConfig] = None,
quant_config: Optional[QuantizationConfig] = None,
) -> None:
super().__init__()
self.hidden_size = config.hidden_size
rope_theta = getattr(config, "rope_theta", 10000)
rope_scaling = getattr(config, "rope_scaling", None)
max_position_embeddings = getattr(config, "max_position_embeddings", 8192)
self.self_attn = DeepseekV2Attention(
config=config,
hidden_size=self.hidden_size,
num_heads=config.num_attention_heads,
qk_nope_head_dim=config.qk_nope_head_dim,
qk_rope_head_dim=config.qk_rope_head_dim,
v_head_dim=config.v_head_dim,
q_lora_rank=config.q_lora_rank if hasattr(config, "q_lora_rank") else None,
kv_lora_rank=config.kv_lora_rank,
rope_theta=rope_theta,
rope_scaling=rope_scaling,
max_position_embeddings=max_position_embeddings,
cache_config=cache_config,
quant_config=quant_config,
layer_id=layer_id,
)
if (
config.n_routed_experts is not None
and layer_id >= config.first_k_dense_replace
and layer_id % config.moe_layer_freq == 0
):
self.mlp = DeepseekV2MoE(config=config, quant_config=quant_config)
else:
self.mlp = DeepseekV2MLP(
hidden_size=config.hidden_size,
intermediate_size=config.intermediate_size,
hidden_act=config.hidden_act,
quant_config=quant_config,
)
self.input_layernorm = RMSNorm(config.hidden_size, eps=config.rms_norm_eps)
self.post_attention_layernorm = RMSNorm(
config.hidden_size, eps=config.rms_norm_eps
)
def forward(
self,
positions: torch.Tensor,
hidden_states: torch.Tensor,
input_metadata: InputMetadata,
residual: Optional[torch.Tensor],
) -> torch.Tensor:
# Self Attention
if residual is None:
residual = hidden_states
hidden_states = self.input_layernorm(hidden_states)
else:
hidden_states, residual = self.input_layernorm(hidden_states, residual)
hidden_states = self.self_attn(
positions=positions,
hidden_states=hidden_states,
input_metadata=input_metadata,
)
# Fully Connected
hidden_states, residual = self.post_attention_layernorm(hidden_states, residual)
hidden_states = self.mlp(hidden_states)
return hidden_states, residual
class DeepseekV2Model(nn.Module):
fall_back_to_pt_during_load = False
def __init__(
self,
config: PretrainedConfig,
cache_config: Optional[CacheConfig] = None,
quant_config: Optional[QuantizationConfig] = None,
) -> None:
super().__init__()
self.padding_id = config.pad_token_id
self.vocab_size = config.vocab_size
self.embed_tokens = VocabParallelEmbedding(
config.vocab_size,
config.hidden_size,
)
self.layers = nn.ModuleList(
[
DeepseekV2DecoderLayer(
config,
layer_id,
cache_config=cache_config,
quant_config=quant_config,
)
for layer_id in range(config.num_hidden_layers)
]
)
self.norm = RMSNorm(config.hidden_size, eps=config.rms_norm_eps)
def forward(
self,
input_ids: torch.Tensor,
positions: torch.Tensor,
input_metadata: InputMetadata,
) -> torch.Tensor:
hidden_states = self.embed_tokens(input_ids)
residual = None
for i in range(len(self.layers)):
layer = self.layers[i]
hidden_states, residual = layer(
positions, hidden_states, input_metadata, residual
)
hidden_states, _ = self.norm(hidden_states, residual)
return hidden_states
class DeepseekV2ForCausalLM(nn.Module):
def __init__(
self,
config: PretrainedConfig,
cache_config: Optional[CacheConfig] = None,
quant_config: Optional[QuantizationConfig] = None,
) -> None:
super().__init__()
self.config = config
self.quant_config = quant_config
self.model = DeepseekV2Model(config, cache_config, quant_config)
self.lm_head = ParallelLMHead(
config.vocab_size, config.hidden_size, quant_config=quant_config
)
self.logits_processor = LogitsProcessor(config)
def forward(
self,
input_ids: torch.Tensor,
positions: torch.Tensor,
input_metadata: InputMetadata,
) -> torch.Tensor:
hidden_states = self.model(input_ids, positions, input_metadata)
return self.logits_processor(
input_ids, hidden_states, self.lm_head.weight, input_metadata
)
def load_weights(self, weights: Iterable[Tuple[str, torch.Tensor]]):
stacked_params_mapping = [
# (param_name, shard_name, shard_id)
("gate_up_proj", "gate_proj", 0),
("gate_up_proj", "up_proj", 1),
]
# Params for weights, fp8 weight scales, fp8 activation scales
# (param_name, weight_name, expert_id, shard_id)
expert_params_mapping = FusedMoE.make_expert_params_mapping(
ckpt_gate_proj_name="gate_proj",
ckpt_down_proj_name="down_proj",
ckpt_up_proj_name="up_proj",
num_experts=self.config.n_routed_experts,
)
params_dict = dict(self.named_parameters())
for name, loaded_weight in weights:
if "rotary_emb.inv_freq" in name:
continue
for param_name, weight_name, shard_id in stacked_params_mapping:
# Skip non-stacked layers and experts (experts handled below).
if weight_name not in name:
continue
# We have mlp.experts[0].gate_proj in the checkpoint.
# Since we handle the experts below in expert_params_mapping,
# we need to skip here BEFORE we update the name, otherwise
# name will be updated to mlp.experts[0].gate_up_proj, which
# will then be updated below in expert_params_mapping
# for mlp.experts[0].gate_gate_up_proj, which breaks load.
if ("mlp.experts." in name) and name not in params_dict:
continue
name = name.replace(weight_name, param_name)
# Skip loading extra bias for GPTQ models.
if name.endswith(".bias") and name not in params_dict:
continue
param = params_dict[name]
weight_loader = param.weight_loader
weight_loader(param, loaded_weight, shard_id)
break
else:
for mapping in expert_params_mapping:
param_name, weight_name, expert_id, shard_id = mapping
if weight_name not in name:
continue
name = name.replace(weight_name, param_name)
param = params_dict[name]
weight_loader = param.weight_loader
weight_loader(
param,
loaded_weight,
weight_name,
shard_id=shard_id,
expert_id=expert_id,
)
break
else:
# Skip loading extra bias for GPTQ models.
if name.endswith(".bias") and name not in params_dict:
continue
param = params_dict[name]
weight_loader = getattr(
param, "weight_loader", default_weight_loader
)
weight_loader(param, loaded_weight)
EntryClass = DeepseekV2ForCausalLM
...@@ -28,6 +28,7 @@ class ServerArgs: ...@@ -28,6 +28,7 @@ class ServerArgs:
mem_fraction_static: Optional[float] = None mem_fraction_static: Optional[float] = None
max_prefill_tokens: Optional[int] = None max_prefill_tokens: Optional[int] = None
max_running_requests: Optional[int] = None max_running_requests: Optional[int] = None
max_num_reqs: Optional[int] = None
schedule_heuristic: str = "lpm" schedule_heuristic: str = "lpm"
schedule_conservativeness: float = 1.0 schedule_conservativeness: float = 1.0
...@@ -203,6 +204,12 @@ class ServerArgs: ...@@ -203,6 +204,12 @@ class ServerArgs:
default=ServerArgs.max_running_requests, default=ServerArgs.max_running_requests,
help="The maximum number of running requests.", help="The maximum number of running requests.",
) )
parser.add_argument(
"--max-num-reqs",
type=int,
default=None,
help="The maximum number of requests to serve in the memory pool. If the model have a large context length, you may need to decrease this value to avoid out-of-memory errors.",
)
parser.add_argument( parser.add_argument(
"--schedule-heuristic", "--schedule-heuristic",
type=str, type=str,
......
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment