Unverified Commit 646cef2e authored by Yi Zhang's avatar Yi Zhang Committed by GitHub
Browse files

support qwen3 dense model dp attention (#7681)

parent 1dce6c48
......@@ -43,6 +43,7 @@ from sglang.srt.layers.vocab_parallel_embedding import (
ParallelLMHead,
VocabParallelEmbedding,
)
from sglang.srt.managers.schedule_batch import global_server_args_dict
from sglang.srt.model_executor.forward_batch_info import ForwardBatch, PPProxyTensors
from sglang.srt.model_loader.weight_utils import (
default_weight_loader,
......@@ -264,6 +265,7 @@ class Qwen2Model(nn.Module):
config.vocab_size,
config.hidden_size,
quant_config=quant_config,
enable_tp=not global_server_args_dict["enable_dp_attention"],
prefix=add_prefix("embed_tokens", prefix),
)
else:
......@@ -331,6 +333,10 @@ class Qwen2Model(nn.Module):
"residual": residual,
}
)
else:
if hidden_states.shape[0] != 0:
if residual is None:
hidden_states = self.norm(hidden_states)
else:
hidden_states, _ = self.norm(hidden_states, residual)
return hidden_states
......
......@@ -14,6 +14,8 @@ from sglang.srt.distributed import (
split_tensor_along_last_dim,
tensor_model_parallel_all_gather,
)
from sglang.srt.layers.communicator import LayerCommunicator, LayerScatterModes
from sglang.srt.layers.dp_attention import get_attention_tp_rank, get_attention_tp_size
from sglang.srt.layers.layernorm import RMSNorm
from sglang.srt.layers.linear import QKVParallelLinear, RowParallelLinear
from sglang.srt.layers.logits_processor import LogitsProcessor
......@@ -54,18 +56,21 @@ class Qwen3Attention(nn.Module):
self.hidden_size = hidden_size
self.tp_size = get_tensor_model_parallel_world_size()
self.total_num_heads = num_heads
assert self.total_num_heads % self.tp_size == 0
self.num_heads = self.total_num_heads // self.tp_size
attn_tp_rank = get_attention_tp_rank()
attn_tp_size = get_attention_tp_size()
assert self.total_num_heads % attn_tp_size == 0
self.num_heads = self.total_num_heads // attn_tp_size
self.total_num_kv_heads = num_kv_heads
if self.total_num_kv_heads >= self.tp_size:
if self.total_num_kv_heads >= attn_tp_size:
# Number of KV heads is greater than TP size, so we partition
# the KV heads across multiple tensor parallel GPUs.
assert self.total_num_kv_heads % self.tp_size == 0
assert self.total_num_kv_heads % attn_tp_size == 0
else:
# Number of KV heads is less than TP size, so we replicate
# the KV heads across multiple tensor parallel GPUs.
assert self.tp_size % self.total_num_kv_heads == 0
self.num_kv_heads = max(1, self.total_num_kv_heads // self.tp_size)
assert attn_tp_size % self.total_num_kv_heads == 0
self.num_kv_heads = max(1, self.total_num_kv_heads // attn_tp_size)
self.head_dim = head_dim or hidden_size // self.total_num_heads
self.q_size = self.num_heads * self.head_dim
self.kv_size = self.num_kv_heads * self.head_dim
......@@ -84,6 +89,8 @@ class Qwen3Attention(nn.Module):
self.total_num_kv_heads,
bias=attention_bias,
quant_config=quant_config,
tp_rank=attn_tp_rank,
tp_size=attn_tp_size,
prefix=add_prefix("qkv_proj", prefix),
)
self.o_proj = RowParallelLinear(
......@@ -91,6 +98,9 @@ class Qwen3Attention(nn.Module):
hidden_size,
bias=attention_bias,
quant_config=quant_config,
tp_rank=attn_tp_rank,
tp_size=attn_tp_size,
reduce_results=False,
prefix=add_prefix("o_proj", prefix),
)
......@@ -176,6 +186,18 @@ class Qwen3DecoderLayer(nn.Module):
config.hidden_size, eps=config.rms_norm_eps
)
self.layer_scatter_modes = LayerScatterModes.init_new(
layer_id=layer_id,
num_layers=config.num_hidden_layers,
is_layer_sparse=False,
is_previous_layer_sparse=False,
)
self.layer_communicator = LayerCommunicator(
layer_scatter_modes=self.layer_scatter_modes,
input_layernorm=self.input_layernorm,
post_attention_layernorm=self.post_attention_layernorm,
)
def forward(
self,
positions: torch.Tensor,
......@@ -184,11 +206,10 @@ class Qwen3DecoderLayer(nn.Module):
residual: Optional[torch.Tensor],
) -> Tuple[torch.Tensor, torch.Tensor]:
# Self Attention
if residual is None:
residual = hidden_states
hidden_states = self.input_layernorm(hidden_states)
else:
hidden_states, residual = self.input_layernorm(hidden_states, residual)
hidden_states, residual = self.layer_communicator.prepare_attn(
hidden_states, residual, forward_batch
)
if hidden_states.shape[0] != 0:
hidden_states = self.self_attn(
positions=positions,
hidden_states=hidden_states,
......@@ -196,8 +217,13 @@ class Qwen3DecoderLayer(nn.Module):
)
# Fully Connected
hidden_states, residual = self.post_attention_layernorm(hidden_states, residual)
hidden_states, residual = self.layer_communicator.prepare_mlp(
hidden_states, residual, forward_batch
)
hidden_states = self.mlp(hidden_states)
hidden_states, residual = self.layer_communicator.postprocess_layer(
hidden_states, residual, forward_batch
)
return hidden_states, residual
......
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment