Skip to content
GitLab
Menu
Projects
Groups
Snippets
Loading...
Help
Help
Support
Community forum
Keyboard shortcuts
?
Submit feedback
Contribute to GitLab
Sign in / Register
Toggle navigation
Menu
Open sidebar
change
sglang
Commits
646cef2e
"vscode:/vscode.git/clone" did not exist on "d90c3d6b8bcc30943b775aad0bb37402663adfaa"
Unverified
Commit
646cef2e
authored
Jul 04, 2025
by
Yi Zhang
Committed by
GitHub
Jul 03, 2025
Browse files
support qwen3 dense model dp attention (#7681)
parent
1dce6c48
Changes
2
Show whitespace changes
Inline
Side-by-side
Showing
2 changed files
with
49 additions
and
17 deletions
+49
-17
python/sglang/srt/models/qwen2.py
python/sglang/srt/models/qwen2.py
+7
-1
python/sglang/srt/models/qwen3.py
python/sglang/srt/models/qwen3.py
+42
-16
No files found.
python/sglang/srt/models/qwen2.py
View file @
646cef2e
...
...
@@ -43,6 +43,7 @@ from sglang.srt.layers.vocab_parallel_embedding import (
ParallelLMHead
,
VocabParallelEmbedding
,
)
from
sglang.srt.managers.schedule_batch
import
global_server_args_dict
from
sglang.srt.model_executor.forward_batch_info
import
ForwardBatch
,
PPProxyTensors
from
sglang.srt.model_loader.weight_utils
import
(
default_weight_loader
,
...
...
@@ -264,6 +265,7 @@ class Qwen2Model(nn.Module):
config
.
vocab_size
,
config
.
hidden_size
,
quant_config
=
quant_config
,
enable_tp
=
not
global_server_args_dict
[
"enable_dp_attention"
],
prefix
=
add_prefix
(
"embed_tokens"
,
prefix
),
)
else
:
...
...
@@ -331,6 +333,10 @@ class Qwen2Model(nn.Module):
"residual"
:
residual
,
}
)
else
:
if
hidden_states
.
shape
[
0
]
!=
0
:
if
residual
is
None
:
hidden_states
=
self
.
norm
(
hidden_states
)
else
:
hidden_states
,
_
=
self
.
norm
(
hidden_states
,
residual
)
return
hidden_states
...
...
python/sglang/srt/models/qwen3.py
View file @
646cef2e
...
...
@@ -14,6 +14,8 @@ from sglang.srt.distributed import (
split_tensor_along_last_dim
,
tensor_model_parallel_all_gather
,
)
from
sglang.srt.layers.communicator
import
LayerCommunicator
,
LayerScatterModes
from
sglang.srt.layers.dp_attention
import
get_attention_tp_rank
,
get_attention_tp_size
from
sglang.srt.layers.layernorm
import
RMSNorm
from
sglang.srt.layers.linear
import
QKVParallelLinear
,
RowParallelLinear
from
sglang.srt.layers.logits_processor
import
LogitsProcessor
...
...
@@ -54,18 +56,21 @@ class Qwen3Attention(nn.Module):
self
.
hidden_size
=
hidden_size
self
.
tp_size
=
get_tensor_model_parallel_world_size
()
self
.
total_num_heads
=
num_heads
assert
self
.
total_num_heads
%
self
.
tp_size
==
0
self
.
num_heads
=
self
.
total_num_heads
//
self
.
tp_size
attn_tp_rank
=
get_attention_tp_rank
()
attn_tp_size
=
get_attention_tp_size
()
assert
self
.
total_num_heads
%
attn_tp_size
==
0
self
.
num_heads
=
self
.
total_num_heads
//
attn_tp_size
self
.
total_num_kv_heads
=
num_kv_heads
if
self
.
total_num_kv_heads
>=
self
.
tp_size
:
if
self
.
total_num_kv_heads
>=
attn_
tp_size
:
# Number of KV heads is greater than TP size, so we partition
# the KV heads across multiple tensor parallel GPUs.
assert
self
.
total_num_kv_heads
%
self
.
tp_size
==
0
assert
self
.
total_num_kv_heads
%
attn_
tp_size
==
0
else
:
# Number of KV heads is less than TP size, so we replicate
# the KV heads across multiple tensor parallel GPUs.
assert
self
.
tp_size
%
self
.
total_num_kv_heads
==
0
self
.
num_kv_heads
=
max
(
1
,
self
.
total_num_kv_heads
//
self
.
tp_size
)
assert
attn_
tp_size
%
self
.
total_num_kv_heads
==
0
self
.
num_kv_heads
=
max
(
1
,
self
.
total_num_kv_heads
//
attn_
tp_size
)
self
.
head_dim
=
head_dim
or
hidden_size
//
self
.
total_num_heads
self
.
q_size
=
self
.
num_heads
*
self
.
head_dim
self
.
kv_size
=
self
.
num_kv_heads
*
self
.
head_dim
...
...
@@ -84,6 +89,8 @@ class Qwen3Attention(nn.Module):
self
.
total_num_kv_heads
,
bias
=
attention_bias
,
quant_config
=
quant_config
,
tp_rank
=
attn_tp_rank
,
tp_size
=
attn_tp_size
,
prefix
=
add_prefix
(
"qkv_proj"
,
prefix
),
)
self
.
o_proj
=
RowParallelLinear
(
...
...
@@ -91,6 +98,9 @@ class Qwen3Attention(nn.Module):
hidden_size
,
bias
=
attention_bias
,
quant_config
=
quant_config
,
tp_rank
=
attn_tp_rank
,
tp_size
=
attn_tp_size
,
reduce_results
=
False
,
prefix
=
add_prefix
(
"o_proj"
,
prefix
),
)
...
...
@@ -176,6 +186,18 @@ class Qwen3DecoderLayer(nn.Module):
config
.
hidden_size
,
eps
=
config
.
rms_norm_eps
)
self
.
layer_scatter_modes
=
LayerScatterModes
.
init_new
(
layer_id
=
layer_id
,
num_layers
=
config
.
num_hidden_layers
,
is_layer_sparse
=
False
,
is_previous_layer_sparse
=
False
,
)
self
.
layer_communicator
=
LayerCommunicator
(
layer_scatter_modes
=
self
.
layer_scatter_modes
,
input_layernorm
=
self
.
input_layernorm
,
post_attention_layernorm
=
self
.
post_attention_layernorm
,
)
def
forward
(
self
,
positions
:
torch
.
Tensor
,
...
...
@@ -184,11 +206,10 @@ class Qwen3DecoderLayer(nn.Module):
residual
:
Optional
[
torch
.
Tensor
],
)
->
Tuple
[
torch
.
Tensor
,
torch
.
Tensor
]:
# Self Attention
if
residual
is
None
:
residual
=
hidden_states
hidden_states
=
self
.
input_layernorm
(
hidden_states
)
else
:
hidden_states
,
residual
=
self
.
input_layernorm
(
hidden_states
,
residual
)
hidden_states
,
residual
=
self
.
layer_communicator
.
prepare_attn
(
hidden_states
,
residual
,
forward_batch
)
if
hidden_states
.
shape
[
0
]
!=
0
:
hidden_states
=
self
.
self_attn
(
positions
=
positions
,
hidden_states
=
hidden_states
,
...
...
@@ -196,8 +217,13 @@ class Qwen3DecoderLayer(nn.Module):
)
# Fully Connected
hidden_states
,
residual
=
self
.
post_attention_layernorm
(
hidden_states
,
residual
)
hidden_states
,
residual
=
self
.
layer_communicator
.
prepare_mlp
(
hidden_states
,
residual
,
forward_batch
)
hidden_states
=
self
.
mlp
(
hidden_states
)
hidden_states
,
residual
=
self
.
layer_communicator
.
postprocess_layer
(
hidden_states
,
residual
,
forward_batch
)
return
hidden_states
,
residual
...
...
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
.
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment