Unverified Commit 5962e70d authored by Trevor Morris's avatar Trevor Morris Committed by GitHub
Browse files

FlashInfer NVFP4 MoE with EP & 2-stream shared expert (#7327)


Co-authored-by: default avatarJieXin Liang <Alcanderian@users.noreply.github.com>
Co-authored-by: default avataralcanderian <alcanderian@gmail.com>
parent edc21cc8
...@@ -1295,6 +1295,9 @@ class DeepEPMoE(EPMoE): ...@@ -1295,6 +1295,9 @@ class DeepEPMoE(EPMoE):
def get_moe_impl_class(): def get_moe_impl_class():
if global_server_args_dict["enable_deepep_moe"]: if global_server_args_dict["enable_deepep_moe"]:
return DeepEPMoE return DeepEPMoE
if global_server_args_dict["enable_flashinfer_moe"]:
# Must come before EPMoE because FusedMoE also supports enable_ep_moe
return FusedMoE
if global_server_args_dict["enable_ep_moe"]: if global_server_args_dict["enable_ep_moe"]:
return EPMoE return EPMoE
return FusedMoE return FusedMoE
...@@ -314,6 +314,8 @@ class FusedMoE(torch.nn.Module): ...@@ -314,6 +314,8 @@ class FusedMoE(torch.nn.Module):
inplace: bool = True, inplace: bool = True,
no_combine: bool = False, no_combine: bool = False,
routed_scaling_factor: Optional[float] = None, routed_scaling_factor: Optional[float] = None,
enable_flashinfer_moe: Optional[bool] = False,
enable_ep_moe: Optional[bool] = False,
): ):
super().__init__() super().__init__()
...@@ -324,9 +326,34 @@ class FusedMoE(torch.nn.Module): ...@@ -324,9 +326,34 @@ class FusedMoE(torch.nn.Module):
self.tp_size = ( self.tp_size = (
tp_size if tp_size is not None else get_tensor_model_parallel_world_size() tp_size if tp_size is not None else get_tensor_model_parallel_world_size()
) )
self.tp_rank = get_tensor_model_parallel_rank()
self.num_experts = num_experts
self.expert_map = None
self.enable_flashinfer_moe = enable_flashinfer_moe
if enable_ep_moe:
assert (
self.enable_flashinfer_moe
), "FusedMoE only supports EP with --enable-flashinfer-moe"
self.ep_size = self.tp_size
self.ep_rank = self.tp_rank
self.tp_size = 1
self.tp_rank = 0
# Create a tensor of size num_experts filled with -1
self.expert_map = torch.full((self.num_experts,), -1, dtype=torch.int32)
# Create a expert map for the local experts
assert num_experts % self.ep_size == 0
self.local_num_experts = num_experts // self.ep_size
self.expert_map[
self.ep_rank
* self.local_num_experts : (self.ep_rank + 1)
* self.local_num_experts
] = torch.arange(0, self.local_num_experts, dtype=torch.int32, device="cpu")
else:
self.ep_size = 1
self.ep_rank = 0
self.local_num_experts = num_experts
self.routed_scaling_factor = routed_scaling_factor self.routed_scaling_factor = routed_scaling_factor
self.top_k = top_k self.top_k = top_k
self.num_experts = num_experts
assert intermediate_size % self.tp_size == 0 assert intermediate_size % self.tp_size == 0
self.intermediate_size_per_partition = intermediate_size // self.tp_size self.intermediate_size_per_partition = intermediate_size // self.tp_size
self.reduce_results = reduce_results self.reduce_results = reduce_results
...@@ -344,7 +371,6 @@ class FusedMoE(torch.nn.Module): ...@@ -344,7 +371,6 @@ class FusedMoE(torch.nn.Module):
self.use_presharded_weights = use_presharded_weights self.use_presharded_weights = use_presharded_weights
self.inplace = inplace self.inplace = inplace
self.no_combine = no_combine self.no_combine = no_combine
self.local_num_experts = num_experts
if quant_config is None: if quant_config is None:
self.quant_method: Optional[QuantizeMethodBase] = ( self.quant_method: Optional[QuantizeMethodBase] = (
...@@ -352,11 +378,13 @@ class FusedMoE(torch.nn.Module): ...@@ -352,11 +378,13 @@ class FusedMoE(torch.nn.Module):
) )
else: else:
self.quant_method = quant_config.get_quant_method(self, prefix) self.quant_method = quant_config.get_quant_method(self, prefix)
if self.quant_method.__class__.__name__ == "ModelOptNvFp4FusedMoEMethod":
self.quant_method.enable_flashinfer_moe = self.enable_flashinfer_moe
assert self.quant_method is not None assert self.quant_method is not None
self.quant_method.create_weights( self.quant_method.create_weights(
layer=self, layer=self,
num_experts=num_experts, num_experts=self.local_num_experts,
hidden_size=hidden_size, hidden_size=hidden_size,
# FIXME: figure out which intermediate_size to use # FIXME: figure out which intermediate_size to use
intermediate_size=self.intermediate_size_per_partition, intermediate_size=self.intermediate_size_per_partition,
...@@ -450,12 +478,15 @@ class FusedMoE(torch.nn.Module): ...@@ -450,12 +478,15 @@ class FusedMoE(torch.nn.Module):
# Narrow parameter and load. # Narrow parameter and load.
# w1, gate_proj: Load into first logical weight of w13. # w1, gate_proj: Load into first logical weight of w13.
if shard_id == "w1":
expert_data = expert_data.narrow(shard_dim, 0, shard_size)
# w3, up_proj: Load into second logical weight of w13. # w3, up_proj: Load into second logical weight of w13.
# trtllm cutlass kernel assumes differently
assert shard_id in ("w1", "w3")
switch_w13 = getattr(self.quant_method, "load_up_proj_weight_first", False)
if (switch_w13 and shard_id == "w1") or (not switch_w13 and shard_id == "w3"):
start = shard_size
else: else:
assert shard_id == "w3" start = 0
expert_data = expert_data.narrow(shard_dim, shard_size, shard_size) expert_data = expert_data.narrow(shard_dim, start, shard_size)
expert_data.copy_(loaded_weight) expert_data.copy_(loaded_weight)
def _load_w2( def _load_w2(
...@@ -509,6 +540,11 @@ class FusedMoE(torch.nn.Module): ...@@ -509,6 +540,11 @@ class FusedMoE(torch.nn.Module):
assert shard_id in ("w1", "w3") assert shard_id in ("w1", "w3")
expert_data.copy_(loaded_weight) expert_data.copy_(loaded_weight)
def _map_global_expert_id_to_local_expert_id(self, expert_id: int) -> int:
if self.expert_map is None:
return expert_id
return self.expert_map[expert_id].item()
def weight_loader( def weight_loader(
self, self,
param: torch.nn.Parameter, param: torch.nn.Parameter,
...@@ -517,6 +553,13 @@ class FusedMoE(torch.nn.Module): ...@@ -517,6 +553,13 @@ class FusedMoE(torch.nn.Module):
shard_id: str, shard_id: str,
expert_id: int, expert_id: int,
) -> None: ) -> None:
expert_id = self._map_global_expert_id_to_local_expert_id(expert_id)
if expert_id == -1:
return
# TP rank is set to 0 if EP is enabled
tp_rank = 0 if self.ep_size > 1 else get_tensor_model_parallel_rank()
# compressed-tensors checkpoints with packed weights are stored flipped # compressed-tensors checkpoints with packed weights are stored flipped
# TODO (mgoin): check self.quant_method.quant_config.quant_format # TODO (mgoin): check self.quant_method.quant_config.quant_format
# against known CompressionFormat enum values that have this quality # against known CompressionFormat enum values that have this quality
...@@ -541,7 +584,6 @@ class FusedMoE(torch.nn.Module): ...@@ -541,7 +584,6 @@ class FusedMoE(torch.nn.Module):
SHARD_ID_TO_SHARDED_DIM = {"w1": 0, "w2": 1, "w3": 0} SHARD_ID_TO_SHARDED_DIM = {"w1": 0, "w2": 1, "w3": 0}
expert_data = param.data[expert_id] expert_data = param.data[expert_id]
tp_rank = get_tensor_model_parallel_rank()
# is_transposed: if the dim to shard the weight # is_transposed: if the dim to shard the weight
# should be flipped. Required by GPTQ, compressed-tensors # should be flipped. Required by GPTQ, compressed-tensors
...@@ -549,7 +591,7 @@ class FusedMoE(torch.nn.Module): ...@@ -549,7 +591,7 @@ class FusedMoE(torch.nn.Module):
is_transposed = getattr(param, "is_transposed", False) is_transposed = getattr(param, "is_transposed", False)
shard_dim = SHARD_ID_TO_SHARDED_DIM[shard_id] shard_dim = SHARD_ID_TO_SHARDED_DIM[shard_id]
if is_transposed: if is_transposed:
shard_dim = ~shard_dim shard_dim = int(not shard_dim)
# Case input scale: input_scale loading is only supported for fp8 # Case input scale: input_scale loading is only supported for fp8
if "input_scale" in weight_name: if "input_scale" in weight_name:
...@@ -690,9 +732,19 @@ class FusedMoE(torch.nn.Module): ...@@ -690,9 +732,19 @@ class FusedMoE(torch.nn.Module):
activation=self.activation, activation=self.activation,
apply_router_weight_on_input=self.apply_router_weight_on_input, apply_router_weight_on_input=self.apply_router_weight_on_input,
routed_scaling_factor=self.routed_scaling_factor, routed_scaling_factor=self.routed_scaling_factor,
**(
dict(
tp_rank=self.tp_rank,
tp_size=self.tp_size,
ep_rank=self.ep_rank,
ep_size=self.ep_size,
)
if self.quant_method.__class__.__name__ == "ModelOptNvFp4FusedMoEMethod"
else {}
),
) )
if self.reduce_results and self.tp_size > 1: if self.reduce_results and (self.tp_size > 1 or self.ep_size > 1):
final_hidden_states = tensor_model_parallel_all_reduce(final_hidden_states) final_hidden_states = tensor_model_parallel_all_reduce(final_hidden_states)
return final_hidden_states return final_hidden_states
......
...@@ -29,11 +29,17 @@ from sglang.srt.layers.quantization.utils import ( ...@@ -29,11 +29,17 @@ from sglang.srt.layers.quantization.utils import (
requantize_with_max_scale, requantize_with_max_scale,
) )
from sglang.srt.layers.radix_attention import RadixAttention from sglang.srt.layers.radix_attention import RadixAttention
from sglang.srt.utils import is_cuda from sglang.srt.utils import is_cuda, next_power_of_2
if is_cuda(): if is_cuda():
from sgl_kernel import cutlass_scaled_fp4_mm, scaled_fp4_quant from sgl_kernel import cutlass_scaled_fp4_mm, scaled_fp4_quant
try:
from flashinfer import fp4_quantize as fp4_quantize
from flashinfer.fused_moe import cutlass_fused_moe as flashinfer_cutlass_fused_moe
except ImportError:
flashinfer_cutlass_fused_moe = None
# Initialize logger for the module # Initialize logger for the module
logger = logging.getLogger(__name__) logger = logging.getLogger(__name__)
...@@ -429,6 +435,9 @@ class ModelOptFp4LinearMethod(LinearMethodBase): ...@@ -429,6 +435,9 @@ class ModelOptFp4LinearMethod(LinearMethodBase):
layer.alpha = Parameter( layer.alpha = Parameter(
layer.input_scale * layer.weight_scale_2, requires_grad=False layer.input_scale * layer.weight_scale_2, requires_grad=False
) )
layer.input_scale_inv = Parameter(
(1 / input_scale_2).to(torch.float32), requires_grad=False
)
# Pad and blockwise interleave weight_scale # Pad and blockwise interleave weight_scale
scales = layer.weight_scale scales = layer.weight_scale
...@@ -467,7 +476,7 @@ class ModelOptFp4LinearMethod(LinearMethodBase): ...@@ -467,7 +476,7 @@ class ModelOptFp4LinearMethod(LinearMethodBase):
output_shape = [x_m, w_n] output_shape = [x_m, w_n]
# Quantize BF16 or FP16 to (FP4 and interleaved block scale) # Quantize BF16 or FP16 to (FP4 and interleaved block scale)
x_fp4, x_scale_interleaved = scaled_fp4_quant(x, 1 / layer.input_scale) x_fp4, x_scale_interleaved = scaled_fp4_quant(x, layer.input_scale_inv)
assert x_fp4.dtype == torch.uint8 assert x_fp4.dtype == torch.uint8
assert x_scale_interleaved.dtype == torch.float8_e4m3fn assert x_scale_interleaved.dtype == torch.float8_e4m3fn
...@@ -521,6 +530,7 @@ class ModelOptNvFp4FusedMoEMethod: ...@@ -521,6 +530,7 @@ class ModelOptNvFp4FusedMoEMethod:
" quantization. Please use Blackwell and" " quantization. Please use Blackwell and"
" above." " above."
) )
self.enable_flashinfer_moe = False
def create_weights( def create_weights(
self, self,
...@@ -674,6 +684,9 @@ class ModelOptNvFp4FusedMoEMethod: ...@@ -674,6 +684,9 @@ class ModelOptNvFp4FusedMoEMethod:
w13_weight_scale_2 = layer.w13_weight_scale_2[:, 0] w13_weight_scale_2 = layer.w13_weight_scale_2[:, 0]
layer.w13_weight_scale_2 = Parameter(w13_weight_scale_2, requires_grad=False) layer.w13_weight_scale_2 = Parameter(w13_weight_scale_2, requires_grad=False)
if self.enable_flashinfer_moe:
w13_input_scale = layer.w13_input_scale.max().to(torch.float32)
else:
w13_input_scale = layer.w13_input_scale.max(dim=1).values.to(torch.float32) w13_input_scale = layer.w13_input_scale.max(dim=1).values.to(torch.float32)
layer.g1_alphas = Parameter( layer.g1_alphas = Parameter(
(w13_input_scale * w13_weight_scale_2).to(torch.float32), (w13_input_scale * w13_weight_scale_2).to(torch.float32),
...@@ -700,14 +713,19 @@ class ModelOptNvFp4FusedMoEMethod: ...@@ -700,14 +713,19 @@ class ModelOptNvFp4FusedMoEMethod:
layer.w13_weight = Parameter(layer.w13_weight.data, requires_grad=False) layer.w13_weight = Parameter(layer.w13_weight.data, requires_grad=False)
# GEMM 2 # GEMM 2
if self.enable_flashinfer_moe:
w2_input_scale = layer.w2_input_scale.max().to(torch.float32)
else:
w2_input_scale = layer.w2_input_scale
layer.g2_alphas = Parameter( layer.g2_alphas = Parameter(
(layer.w2_input_scale * layer.w2_weight_scale_2).to(torch.float32), (w2_input_scale * layer.w2_weight_scale_2).to(torch.float32),
requires_grad=False, requires_grad=False,
) )
# This is for quantization, so we need to invert it. # This is for quantization, so we need to invert it.
layer.w2_input_scale_quant = Parameter( layer.w2_input_scale_quant = Parameter(
(1 / layer.w2_input_scale).to(torch.float32), requires_grad=False (1 / w2_input_scale).to(torch.float32), requires_grad=False
) )
assert ( assert (
...@@ -727,11 +745,16 @@ class ModelOptNvFp4FusedMoEMethod: ...@@ -727,11 +745,16 @@ class ModelOptNvFp4FusedMoEMethod:
layer.cutlass_moe_params = CutlassMoEParams( layer.cutlass_moe_params = CutlassMoEParams(
CutlassMoEType.BlockscaledFP4, CutlassMoEType.BlockscaledFP4,
device, device,
num_experts=layer.num_experts, num_experts=layer.num_experts, # global num experts
intermediate_size_per_partition=layer.w2_weight.shape[2] * 2, # n intermediate_size_per_partition=layer.w2_weight.shape[2] * 2, # n
hidden_size=layer.w13_weight.shape[2] * 2, hidden_size=layer.w13_weight.shape[2] * 2,
) # k ) # k
@property
def load_up_proj_weight_first(self) -> bool:
# FlashInfer CUTLASS kernel assumes [Up, Gate] Proj as W13
return self.enable_flashinfer_moe
def apply( def apply(
self, self,
layer: torch.nn.Module, layer: torch.nn.Module,
...@@ -750,11 +773,13 @@ class ModelOptNvFp4FusedMoEMethod: ...@@ -750,11 +773,13 @@ class ModelOptNvFp4FusedMoEMethod:
inplace: bool = True, inplace: bool = True,
no_combine: bool = False, no_combine: bool = False,
routed_scaling_factor: Optional[float] = None, routed_scaling_factor: Optional[float] = None,
ep_rank: Optional[int] = None,
ep_size: Optional[int] = None,
tp_rank: Optional[int] = None,
tp_size: Optional[int] = None,
) -> torch.Tensor: ) -> torch.Tensor:
assert activation == "silu", "Only SiLU activation is supported." assert activation == "silu", "Only SiLU activation is supported."
from sglang.srt.layers.moe.fused_moe_triton.fused_moe import fused_experts
from sglang.srt.layers.moe.topk import select_experts from sglang.srt.layers.moe.topk import select_experts
topk_weights, topk_ids = select_experts( topk_weights, topk_ids = select_experts(
...@@ -771,6 +796,35 @@ class ModelOptNvFp4FusedMoEMethod: ...@@ -771,6 +796,35 @@ class ModelOptNvFp4FusedMoEMethod:
routed_scaling_factor=routed_scaling_factor, routed_scaling_factor=routed_scaling_factor,
) )
if self.enable_flashinfer_moe:
assert (
not apply_router_weight_on_input
), "apply_router_weight_on_input is not supported for Flashinfer"
# TRTLLM Cutlass moe takes in activations in BF16/Half/nvfp4 precision
# and fp4 quantized weights loaded from the checkpoint
output = flashinfer_cutlass_fused_moe(
x,
topk_ids.to(torch.int),
topk_weights,
layer.w13_weight.view(torch.long),
layer.w2_weight.view(torch.long),
x.dtype,
quant_scales=[
layer.w13_input_scale_quant,
layer.w13_blockscale_swizzled.view(torch.int32),
layer.g1_alphas,
layer.w2_input_scale_quant,
layer.w2_blockscale_swizzled.view(torch.int32),
layer.g2_alphas,
],
ep_size=ep_size,
ep_rank=ep_rank,
tp_size=tp_size,
tp_rank=tp_rank,
tune_max_num_tokens=next_power_of_2(x.shape[0]),
)
return output[0]
from sglang.srt.layers.moe.cutlass_moe import cutlass_moe_fp4 from sglang.srt.layers.moe.cutlass_moe import cutlass_moe_fp4
return cutlass_moe_fp4( return cutlass_moe_fp4(
......
...@@ -86,6 +86,7 @@ GLOBAL_SERVER_ARGS_KEYS = [ ...@@ -86,6 +86,7 @@ GLOBAL_SERVER_ARGS_KEYS = [
"enable_deepep_moe", "enable_deepep_moe",
"deepep_mode", "deepep_mode",
"enable_ep_moe", "enable_ep_moe",
"enable_flashinfer_moe",
"moe_dense_tp_size", "moe_dense_tp_size",
"ep_dispatch_algorithm", "ep_dispatch_algorithm",
"deepep_config", "deepep_config",
......
...@@ -226,6 +226,7 @@ class DeepseekV2MoE(nn.Module): ...@@ -226,6 +226,7 @@ class DeepseekV2MoE(nn.Module):
layer_id: int, layer_id: int,
quant_config: Optional[QuantizationConfig] = None, quant_config: Optional[QuantizationConfig] = None,
prefix: str = "", prefix: str = "",
alt_stream: Optional[torch.cuda.Stream] = None,
): ):
super().__init__() super().__init__()
self.tp_size = get_tensor_model_parallel_world_size() self.tp_size = get_tensor_model_parallel_world_size()
...@@ -238,6 +239,7 @@ class DeepseekV2MoE(nn.Module): ...@@ -238,6 +239,7 @@ class DeepseekV2MoE(nn.Module):
) )
self.config = config self.config = config
self.layer_id = layer_id self.layer_id = layer_id
self.alt_stream = alt_stream
if self.tp_size > config.n_routed_experts: if self.tp_size > config.n_routed_experts:
raise ValueError( raise ValueError(
...@@ -275,6 +277,15 @@ class DeepseekV2MoE(nn.Module): ...@@ -275,6 +277,15 @@ class DeepseekV2MoE(nn.Module):
if global_server_args_dict["enable_deepep_moe"] if global_server_args_dict["enable_deepep_moe"]
else {} else {}
), ),
# Additional args for FusedMoE
**(
dict(
enable_flashinfer_moe=True,
enable_ep_moe=global_server_args_dict["enable_ep_moe"],
)
if global_server_args_dict["enable_flashinfer_moe"]
else {}
),
) )
if config.n_shared_experts is not None and self.num_fused_shared_experts == 0: if config.n_shared_experts is not None and self.num_fused_shared_experts == 0:
...@@ -338,10 +349,36 @@ class DeepseekV2MoE(nn.Module): ...@@ -338,10 +349,36 @@ class DeepseekV2MoE(nn.Module):
self, hidden_states: torch.Tensor, forward_batch: Optional[ForwardBatch] = None self, hidden_states: torch.Tensor, forward_batch: Optional[ForwardBatch] = None
) -> torch.Tensor: ) -> torch.Tensor:
if not self._enable_deepep_moe: if not self._enable_deepep_moe:
DUAL_STREAM_TOKEN_THRESHOLD = 1024
if (
self.alt_stream is not None
and self.num_fused_shared_experts == 0
and hidden_states.shape[0] <= DUAL_STREAM_TOKEN_THRESHOLD
):
return self.forward_normal_dual_stream(hidden_states)
else:
return self.forward_normal(hidden_states) return self.forward_normal(hidden_states)
else: else:
return self.forward_deepep(hidden_states, forward_batch) return self.forward_deepep(hidden_states, forward_batch)
def forward_normal_dual_stream(self, hidden_states: torch.Tensor) -> torch.Tensor:
current_stream = torch.cuda.current_stream()
self.alt_stream.wait_stream(current_stream)
shared_output = self._forward_shared_experts(hidden_states)
with torch.cuda.stream(self.alt_stream):
# router_logits: (num_tokens, n_experts)
router_logits = self.gate(hidden_states)
final_hidden_states = self.experts(
hidden_states=hidden_states, router_logits=router_logits
)
if not _is_cuda:
final_hidden_states *= self.routed_scaling_factor
current_stream.wait_stream(self.alt_stream)
final_hidden_states = final_hidden_states + shared_output
if self.tp_size > 1:
final_hidden_states = tensor_model_parallel_all_reduce(final_hidden_states)
return final_hidden_states
def forward_normal(self, hidden_states: torch.Tensor) -> torch.Tensor: def forward_normal(self, hidden_states: torch.Tensor) -> torch.Tensor:
shared_output = self._forward_shared_experts(hidden_states) shared_output = self._forward_shared_experts(hidden_states)
# router_logits: (num_tokens, n_experts) # router_logits: (num_tokens, n_experts)
...@@ -1446,6 +1483,7 @@ class DeepseekV2DecoderLayer(nn.Module): ...@@ -1446,6 +1483,7 @@ class DeepseekV2DecoderLayer(nn.Module):
quant_config=quant_config, quant_config=quant_config,
prefix=add_prefix("mlp", prefix), prefix=add_prefix("mlp", prefix),
layer_id=self.layer_id, layer_id=self.layer_id,
alt_stream=alt_stream,
) )
else: else:
if enable_moe_dense_fully_dp(): if enable_moe_dense_fully_dp():
......
...@@ -152,6 +152,7 @@ class ServerArgs: ...@@ -152,6 +152,7 @@ class ServerArgs:
ep_size: int = 1 ep_size: int = 1
enable_ep_moe: bool = False enable_ep_moe: bool = False
enable_deepep_moe: bool = False enable_deepep_moe: bool = False
enable_flashinfer_moe: bool = False
deepep_mode: Optional[Literal["auto", "normal", "low_latency"]] = "auto" deepep_mode: Optional[Literal["auto", "normal", "low_latency"]] = "auto"
ep_num_redundant_experts: int = 0 ep_num_redundant_experts: int = 0
ep_dispatch_algorithm: Optional[Literal["static", "dynamic", "fake"]] = None ep_dispatch_algorithm: Optional[Literal["static", "dynamic", "fake"]] = None
...@@ -244,7 +245,15 @@ class ServerArgs: ...@@ -244,7 +245,15 @@ class ServerArgs:
logger.warning( logger.warning(
f"EP MoE is enabled. The expert parallel size is adjusted to be the same as the tensor parallel size[{self.tp_size}]." f"EP MoE is enabled. The expert parallel size is adjusted to be the same as the tensor parallel size[{self.tp_size}]."
) )
if self.enable_flashinfer_moe:
assert (
self.quantization == "modelopt_fp4"
), "modelopt_fp4 quantization is required for Flashinfer MOE"
os.environ["TRTLLM_ENABLE_PDL"] = "1"
self.disable_shared_experts_fusion = True
logger.warning(
f"Flashinfer MoE is enabled. Shared expert fusion is disabled."
)
# Set missing default values # Set missing default values
if self.tokenizer_path is None: if self.tokenizer_path is None:
self.tokenizer_path = self.model_path self.tokenizer_path = self.model_path
...@@ -1162,6 +1171,11 @@ class ServerArgs: ...@@ -1162,6 +1171,11 @@ class ServerArgs:
action="store_true", action="store_true",
help="Enabling expert parallelism for moe. The ep size is equal to the tp size.", help="Enabling expert parallelism for moe. The ep size is equal to the tp size.",
) )
parser.add_argument(
"--enable-flashinfer-moe",
action="store_true",
help="Enable FlashInfer CUTLASS MoE backend for modelopt_fp4 quant on Blackwell. Supports MoE-EP with --enable-ep-moe",
)
parser.add_argument( parser.add_argument(
"--enable-deepep-moe", "--enable-deepep-moe",
action="store_true", action="store_true",
......
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment